• Title/Summary/Keyword: 실시간 종양추적 시스템

Search Result 11, Processing Time 0.023 seconds

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

Analysis of Dose Distribution on Critical Organs for Radiosurgery with CyberKnife Real-Time Tumor Tracking System (사이버나이프 실시간 종양추적 시스템을 이용한 방사선수술 시 주요 장기의 선량분포 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Ji, Young-Hoon;Kim, Kum-Bae;Lee, Sang-Hoon;Choi, Jin-Ho;Lee, Re-Na;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • We measured the dose distribution for spinal cord and tumor using Gafchromic film, applying 3D and 4D-Treatment Planning for lung tumor within the phantom. A measured dose distribution was compared with a calculated dose distribution generated from 3D radiation treatment planning and 4D radiation treatment planning system. The agreement of the dose distribution in tumor for 3D and 4D treatment planning was 90.6%, 97.64% using gamma index computed for a distance to agreement of 1 mm and a dose difference of 3%. However, a gamma agreement index of 3% dose difference tolerence of and 2 mm distance to agreement, the accordance of the dose distribution around cord for 3D and 4D radiation treatment planning was 57.13%, 90.4%. There are significant differences between a calculated dose and a measured dose for 3D radiation treatment planning, no significant differences for 4D treatment planning. The results provide the effectiveness of the 4D treatment planning as compared to 3D. We suggest that the 4-dimensional treatment planning should be considered in the case where such equipments as Cyberknife with the real time tracking system are used to treat the tumors in the moving organ.

  • PDF

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF

Evaluation of Angle Dependence on Positional Radioisotope Source Detector using Monte Carlo Simulation in NDT (몬테카를로 시뮬레이션을 이용한 방사선원 위치 검출기의 각도의존성 연구)

  • Han, Moojae;Heo, Seunguk;Shin, Yohan;Jung, Jaehoon;Kim, Kyotae;Heo, Yeji;Lee, Deukhee;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.141-146
    • /
    • 2019
  • Radiation sources used in the field of industrial non-destructive pose a risk of exposure due to ageing equipment and operator carelessness. Thus, the need for a safety management system to trace the location of the source is being added. In this study, Monte Carlo Simulation was performed to analyse the angle dependence of the unit-cell comprising the line-array dosimeter for tracking the location of radiation sources. As a result, the margin of error for the top 10% of each slope was 5.90% at $0^{\circ}$, 8.08% at $30^{\circ}$, and 20.90% at $60^{\circ}$. The ratio of the total absorbed dose was 83.77% at $30^{\circ}$ and 53.36% at $60^{\circ}$ based on $0^{\circ}$(100%) and showed a tendency to decrease with increasing slope. For all gradients, the maximum number was shown at $30^{\circ}$ No. 9 pixels, and for No. 10, there was a tendency to drop 7.24 percent. This study has shown a large amount of angle dependence, and it is estimated that the proper distance between the source and line-array dosimeters should be maintained at a distance of not less than 1 cm to reduce them.

Preliminary Results of 3-Dimensional Conformal Radiotherapy for Primary Unresectable Hepatocellular Carcinoma (절제 불가능한 원발성 간암의 입체조형 방사선치료의 초기 임상 결과)

  • Keum Ki Chang;Park Hee Chul;Seong Jinsil;Chang Sei Kyoung;Han Kwang Hyub;Chon Chae Yoon;Moon Young Myoung;Kim Gwi Eon;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.123-129
    • /
    • 2002
  • Purpose : The purpose of this study 띤as to determine the potential role of three-dimensional conformal radiotherapy (3D-CRT) in the treatment of primary unresectable hepatocellular carcinoma. The preliminary results on the efficacy and the toxicity of 3D-CRT are reported. Materials and Methods : Seventeen patients were enrolled in this study, which was conducted prospectively from January 1995 to June 1997. The exclusion criteria included the presence of extrahepatic metastasis, liver cirrhosis of Child-Pugh classification C, tumors occupying more than two thirds of the entire liver, and a performance status of more than 3 on the ECOG scale. Two patients were treated with radiotherapy only while the remaining 15 were treated with combined transcatheter arterial chemoembolization. Radiotherapy was given to the field including the tumor plus a 1.5 cm margin using a 3D-CRT technique. The radiation dose ranged from $36\~60\;Gy$ (median; 59.4 Gy). Tumor response was based on a radiological examination such as the CT scan, MR imaging, and hepatic artery angiography at $4\~8$ weeks following the completion of treatment. The acute and subacute toxicities were monitored. Results : An objective response was observed in 11 out of 17 patients, giving a response rate of $64.7\%$. The actuarial survival rate at 2 years was $21.2\%$ from the start of radiotherapy (median survival; 19 months). Six patients developed a distant metastasis consisting of a lung metastasis in 5 patients and bone metastasis in one. The complications related to 30-CRT were gastro-duodenitis $(\geq\;grade\;2)$ in 2 patients. There were no treatment related deaths and radiation induced hepatitis. Conclusion : The preliminary results show that 3D-CRT is a reliable and effective treatment modality for primary unresectable hepatocellular carcinoma compared to other conventional modalities. Further studies to evaluate the definitive role of the 3D-CRT technique in the treatment of primary unresectable hepatocellular carcinoma are needed.

Prediction of Target Motion Using Neural Network for 4-dimensional Radiation Therapy (신경회로망을 이용한 4차원 방사선치료에서의 조사 표적 움직임 예측)

  • Lee, Sang-Kyung;Kim, Yong-Nam;Park, Kyung-Ran;Jeong, Kyeong-Keun;Lee, Chang-Geol;Lee, Ik-Jae;Seong, Jin-Sil;Choi, Won-Hoon;Chung, Yoon-Sun;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.132-138
    • /
    • 2009
  • Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.

  • PDF

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.

Scheduling Algorithms and Queueing Response Time Analysis of the UNIX Operating System (UNIX 운영체제에서의 스케줄링 법칙과 큐잉응답 시간 분석)

  • Im, Jong-Seol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.3
    • /
    • pp.367-379
    • /
    • 1994
  • This paper describes scheduling algorithms of the UNIX operating system and shows an analytical approach to approximate the average conditional response time for a process in the UNIX operating system. The average conditional response time is the average time between the submittal of a process requiring a certain amount of the CPU time and the completion of the process. The process scheduling algorithms in thr UNIX system are based on the priority service disciplines. That is, the behavior of a process is governed by the UNIX process schuduling algorithms that (ⅰ) the time-shared computer usage is obtained by allotting each request a quantum until it completes its required CPU time, (ⅱ) the nonpreemptive switching in system mode and the preemptive switching in user mode are applied to determine the quantum, (ⅲ) the first-come-first-serve discipline is applied within the same priority level, and (ⅳ) after completing an allotted quantum the process is placed at the end of either the runnable queue corresponding to its priority or the disk queue where it sleeps. These process scheduling algorithms create the round-robin effect in user mode. Using the round-robin effect and the preemptive switching, we approximate a process delay in user mode. Using the nonpreemptive switching, we approximate a process delay in system mode. We also consider a process delay due to the disk input and output operations. The average conditional response time is then obtained by approximating the total process delay. The results show an excellent response time for the processes requiring system time at the expense of the processes requiring user time.

  • PDF