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Scheduling Algorithms and Queueing Response Time Analysis
of the UNIX Operating System
Jong Seul Lim?

ABSTRACT

This paper describes scheduling algorithms of the UNIX operating system and shows an ana-
Iytical approach to approximate the average conditional response time for a process in the UNIX
operating system. The average conditional response time 15 the average time between the submit-
tal of a process requiring a certain amount of the CPU time and the completion of the process.
The process scheduling algorithms in thr UNIX system are based on the priority service disci-
plines. That is, the behavior of a process is governed by the UNIX process schuduling algo-
rithms that (i) the time-shared computer usage is obtained by allotting each request a guantum
until it completes its required CPU time, (ii) the nonpreemptive switching in system mode and
the preemptive switching in user mode are applied to determine the quantum, (i) the first-
come- first-serve discipline is applied within the same priority level, and (iv) after completing an
allotted quantum the process is placed at the end of either the runnable queue corresponding to
its priority or the disk queue where it sleeps. These process scheduling algorithms create the
round-robin effect in user mode. Using the round-robin effect and the preemptive switching, we
approximate a process delay in user mode, Using the nonpreemptive switching, we approximate
a process delay in system mode. We also consider a process delay due to the disk input and
output operations. The average conditional response time is then obtained by approximating the
total process delay. The results show an excellent response time for the processes requiring
system time at the expense of the processes requiring user time.
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1. Introduction

This paper introduces the scheduling
algorithms of the UNIXe operating system and
shows an analytical approach to approximate the
average conditional response time for a process
in the UNIX operating system. The average
conditional response time is the average time
between the submittal of a process requiring x
seconds of the CPU time (see CPU time in
Section 4.1) and the completion of the process.
The average conditional respomse time is a
function of the CPU time - it is proportional to
the CPU time. In the UNIX system, the CPU
time consists of system time and user time (see
Section 4.1). Therefore, the average conditional
response time is a function of system time and
user time. Also, the UNIX system has two
classes of priorities - system priorities and user
priorities and two types of modes - system mode
and user mode (see Sections 3.1 & 4.1). For
priorities, a system priority is higher than any
user priority. The process scheduling algorithms
in the UNIX system are based on the above
priorities and modes. That is, a process is
scheduled by the preemplive switching if a
process is in user mode; by the nonpreemptive
switching if the process is in system mode; by
FCFS if the process is in the same priority level
(see Section 3.3). From these process scheduling
algorithms, we found the round-robin effect is
created in user mode (see Section 3.4). Using
the round-round effect and the preemptive
switching, we approximate a process delay
during its stay in user mode. Using the
nonpreempfive switching, we approximate a
process delay during its stay in system mode. We
also considered a process delay during its stay
" for resources (e.g., block I/0). The average
conditional response time is then obtained by
approximating the total process delay (see
Section 4.4).

The organization of this paper is as follows.
Section 2 gives a brief overview of the well-
known round-robin scheduling algorithm.
Section 3 describes the process scheduling
algorithms in the UNIX system. In Section 4,
we introduce definitions, assumptions, and
notation that are needed for our analyses. We

also formulate a mathematical model of the
average conditional response time and show
approximate analyses. In Section 5, we present
a case study for the exponential distribution.
The case study gives some numerical results and
discussions for the average conditional response
time. Section 6 describes  practical
considerations of the derived results. By way of
example, the average conditional response time
of the UNIX systern under an IBM-3081K
machine is presented. Conclusions are given in
Section 7.

2. The Roumd-Robin Scheduling Algorithun

In this section, we briefly describe the well-
known round-robin scheduling algorithm. A
newly arriving process joins the end of a single
quete and waits until it finally reaches the CPU
in a first-come-first-serve (FCFS) discipline.
Upon reaching the CPU, the process seizes the
CPU for the preassigned quantum. The process
is then ejected from the CPU at the time it
completes a preassigned quantum. Assuming
that all quanta shrink to zero, the round-robin
algorithm results in what is commonly known as
the processor-sharing system. For the
processor-sharing system, Kleinrock [3,4] and
Sakata [8] derived the average response time of
a process requiring x seconds of the CPU time

as T() = %, where p = (average arrival rate of

processes) x (average of the required CPU time
x) = X . If the process completes its required
CPU time, it departs from the system and the
CPU immediately executes the next process
waiting at the head of the queue. If the process
has not completed its required CPU time, it is
cycled back to the end of the queune. The
structure of this system is shown in Figure 1.
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(Fig. 1) The Round-Robin System.



This section describes typical concepts as to
how the UNIX process scheduling is dome.
Bach [1] discussed a detailed UNIX scheduling
algorithm. Henry [2] showed the UNIX
scheduler handles processes according to the
prioritized round-robin scheduling algorithm. A
brief discussion related to the UNIX scheduling
algorithm is presented in Thompson [10]. Since
source codes of the UNIX system are constantly
modified, some of our descriptions in this
section might not be appropriate for some cases.

3.1 B Classes Of Priorities

In the UNIX system, the process scheduling
algorithm 1is based on a priority service
discipline using 128 priorities from 0 {high and
good) to 127 (low and bad). There is one
important dividing priority in these priorities, at
40. Prionty 40 separates system priorities from
user priorities (priority 40 is a user priority). A
system priority is higher than any other user
priority. A priority between 0 and 39 is assigned
to a process that goes to sleep. A process goes
to sleep when the resource {e.g, block I/0) it
requests iz unavailable and sleeps unti the
resource is obtained. When it wakes up, the
process is placed at the end of the queue with
the good priority (ie., system priority).

3.2 Camnputation Of Priority

The priority of a process in system mode
remains unchanged unless this process issues a
system call (see system call in Section 4.1) and
goes to sleep. The process goes to sleep and its
priority is raised to a system priority only when
the resource it requests is nnavailable. A system
priority is assigned according to the event for
which the process is waiting. On the other hand,
the priority of a process in user mode (i.e., user
priority) changes dynamically, according to the
recent CPU usage. The priority of a process in
user mode decreases as it uses the CPU and
increases as it waits for the CPU. The following
example computes the priority of the process in
user mode. The initial default user priority
" (usually 60) assigned to the process in user
mode lasts only less than one second on the

"
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UNIX System V. It then receives a new value
according to (3.1). A new user priority in (3.1)
is computed every one second clock interrupt
(e.g., every a0 clock tick)' or each time a
process returns from a system call. The p cpugy.,
in (3.1) is incremented by 1 in every 1/60 second
clock tick while the process is executing on the
CPU. Starting from zero, it can increase to a
maximal value of 80. This zero value of p cpus
is assigned when a new process arrives, when a
process is swapped inZ , or when a process
leaves the CPU for a long time (usually more
than 7 seconds). The p cpun is halved only at
every 60® clock tick. Note that p cpug. becomes
D CPUitore at every 60% clock tick and that the
smaller user priority in (3.1) implies the higher
scheduling priority.

user priority =

at the 60% clock tick (3.1)

otherwise,

2
60 4 JP-SPURom/
P CPUnw

where p cpu.w is computed by the following
equation at every 60% clock tick just before the
priority is computed by (3.1).

PSPl = -;—{Min(ﬂo + P_CPUbcfore +

the number of clock ticks while the process seizes the CPU)}.

3.3 Scheduling With Four Disciplines

A newly arriving process usually gets a user
priority 60 and joins at the end of the queue with
priority 60. Also the process stays in user mode.
Note a process may run either of two modes,
namely user mode or system mode. It then
accesses the CPU by FCFS. Upon seizing the
CPU, the UNIX scheduler allots a quantum the
process. A quantum is usually one second. If
the process has not been interrupted during the
full one second quantum, the process uses the
CPU for the full one second and is then ejected
to be placed at the end of the gqueue
corresponding to its user priority. If the process

1. In this eample, one second has 60 clock ticks.

2. For swapping policy, a process is swapped in from a
secondary memory device. For a demand paging policy, a
page is swapped in from a secondary memory device
each time page fault occurs,
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is interrupted by the higher priority process
before a full one second quantum, the process is
preempted (for this case, a quantum is less than
one second). It is then placed at the end of the
queue corresponding to its user priority. This
discipline is the preemptive suniching in user
mode. When it gets the CPU later, its service
continues from the point of preemption. On the
other hand, if the process in 2 user priority
issues a system call, the process transfers from
user mode to system mode. In this case the
priority of the process remains unchanged, but it
is neither preempted by the process with the
higher priority nor ejected by a quantum
expiration. That is, the process completes the
system call regardless of quantum and priority.
This discipline is the first type of the
nonpreemptive switching in system mode. During
a system call, the process is put to sleep if the
resource is unavailable. It then gets the system
priority (high and good). Once the process with
a system priority gets the CPU, it also be neither
preempted by the process with higher priority
nor ejected by a quantum expiration. This
discipline is the second type of the nonpreemptive
switching in system mode. Processes waiting on
the same user or system priority are dispatched
to the CPU, according to their arrival time on
that priority. This discipline is FCFS within a
Prionty Level.

Upon completing the whole required CPU time,
the process departs from the UNIX system and
the CPU immediately executes the next process
waiting at the head of the highest priority queue.
If no process in the UNIX system, the CPU
becomes idle.

8.4 Round-Robin Effect In User Mode

The UNIX process scheduling algorithm
creates the round-robin effect in user mode
(note that it does mnot create the round-robin
effect in system mode). That is, the behavior of
the processes in user mode do not exactly follow
round-robin (see Section 2), but it resembles
round-robin. To explain that, we consider the
following three categories derived from the
example in Seciion 3.2

Category 1 :if a process in user mode has

required an unavailable resource
during one second quantum (i.e., if
a process has to go to sleep), it will
be placed at the end of a queue that
is somewhere between 60% priority
quene and 100® priority queue® when
1t returns to user mode from system
mode.

Category 2 :a process in user mode has not
required any resource and not been
preempted during one second
quantum, it will be placed at the end
of a queue that is somewhere
between 75™ and 80* queue.

Category 3 :if a process in user mode has
required an available resource or
been preempted during one second
quantum, it will be placed at the
end of a queue that is somewhere
between 60 and 80 queune.

From the above, we have the immediate result
that a process in Category 1 will be on the
average delayed longer than a process in
Category 3. A process in Category 2 will be on
the average delayed longer than a process in
Category 3. In other words, a process that has
required an unavailable resource or has
completed a full one second quantum is delayed
longer than a process that has not completed a
full one second quantum. From this, we deduce
the following:

« If a process has required an unavailable
resource or has completed a full one
second quantum, it is on the average
delayed longer than other processes in
the UNIX system;

« if a process has not completed a full one
second quantum, it is on the average
delayed shorter than other processes in
the UNIX system.

We can then see that the delay in user mode is
counterbalanced by the above two
considerations so that the overall delay in user

3. From (31), we can compute the new user priority
ranging from 60 to 100.



mode may approach the same delay as in the
round-robin scheduling algorithm. Moreover,
as time progresses the priority of a process rises
until it gets the CPU no matter which category it
may belong to. Therefore, we believe the
round-robin effect is created in user mode. This
round-robin effect in user mode could be
validated by the computer simulation. We plan
to publish the computer simulation study on the
round-robin effect in future. In this paper, we
will use the round-robin effect in user mode
without the exact proof.

4 An Analysis Of The UNIX Response Time

In this section, we introduce the following
definitions, assumptions, and notation. Those
will be used throughout the paper. We then
formulate and analyze an approximate model.

4.1 Definitions
« CPU time : the required processing time

of a process (CPU time consists of
gystem time and user time).

« System mode : 2 UNIX mode where a
process executes the UNIX kernel codes
and accesses the system data segment.

e User mode : a UNIX mode where a
process executes user programs and
accesses the user data segment.

« System call : a call that is initiated by the
processes in user mode and causes a
transition from user mode to system
mode.

« System priorities : UNIX priorities from
0 to 39 (high and good).

» User prionities : UNIX priorities from 40
to 127 (low and bad).

«-System time : the time a process spends
in system mode.

« Usger time : the time a process spends in
user mode.

« Our tagged process : a process that we
keep track of from its arrival (or
submittal) to its departure (or
completion) by attaching a tag.
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» The average unfinished work U : the
average CPU time required to empty all
processes already in the UNIX system,
assuming no mnew process enters the
UNIX system (note that U equals the
average waiting time of arriving
processes in the queue by a FCFS
discipline, but U is not equal to the
average waiting time in the queue by the
round-robin scheduling algorithm).

s The average modified unfinished work
U* : the average CPU time required to
empty all processes already in the UNIX
system, assuming no new process enters
the UNIX system and assuming any
process requiring the longer CPU time
than our tagged process requires just the
same CPU time as our tagged process.

e CPU factor : User time devided by CPU
time.

42 Assumptions
A. The system has only one server (Le., one
CPU).

B. The arrival stream of processes and the
requesting stream of system calls by
processes are Poissonian at the average
rates of A and ), respectively. The amount
of the user time required by each arrival
process and the amount of the system
time required by each system call follow
arbitrary distributions with the average of
% and 4, respectively. The k* moments of
those are x* and i, respectively.

C. The context switching overhead between
processes is negligible; all quanta in user
mode are the same size and shrink to a
negligibly small amount (presumably
almost zero).

D. The first type of the nonpreemptive
swiching in system mode (see Section 3.3)
does not happen. That is, we assume the
requested resource is always unavailable.
This assumption assures that a process in
user mode has always a user priority and a
process in systemmn mode has always a
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system priority. Without this assumption,
a process in system mode could have a
user priority.

43 Notation

x, the system time of our tagged process.

x, the user time of our tagged process.

x  the total CPU time of our tagged process
=X 4 Hye
p the CPU factor, x, devided byx

T(x) The average response time of a process
requiring x seconds of the CPU time
{i.e., the average conditional response
time).

U, the average unfinished work for system
time of processes In system priorities.

U, the average modified unfinished work
for user time of processes found by our
tagged process.

A, the average rate at which processes need
the UNIX kernel (this rate results from
system calls because a system call is
generated each time processes need the
UNIX kernel).

A the average arrival rate of processes.

t,  the average system time required by each
system call (iLe., the average duration of
a system call).

#  the n® moment for the gystemn time
required by each system call.

% the average user time of all the processes
entering the UNIX system.

X'  our tagged process average delay by user
time of new arrivals during its stay in the
UNIX system.

5 the n® moment for the truncated

remaining user fime.

7  the portion of time that the CPU
executes processes in system mode (i.e.,
utilization for system time of processes =

] A%)-

pe  the portion of time that the CPU
executes processes in user mode (ie.,
utilization for user time of processes =
X)-

v the expected portion of time that our
tagged process is waiting for resources
{e-g-, block I/O) during its stay in the
UNIX system.

4.4 Model Formmlation

We begin by formulating cur response time
model from the viewpoint of our tagged process.
Our tagged process is delayed on the average by
the total system and user time of the processes
waiting for the CPU during its stay at the UNIX
system, by the waiting time for resources it
needs, and by its own service time (i.e., by its
required CPU time).

Toad 1o Frox emy Pros: Thgred Frocos r:gdhnm.
—  { Doy chac W Diclay due 0 Diclay [ —
| | )| &
of Ottt of Cuber Sor Fiemmarvoy Time

Figure 2. The Total Tagged Process Delay.

Figure 2 above concisely illustrates the average
conditional response time of our tagged process.
As shown in Figure 2, the total tagged process
delay equals the average conditional response
time of our tagged process. Now, we can
rewrite boxes 1-5 as T(x), Ti(x), Ta(x), Ts(x), and
Ta(), Tespectively. Thus,

T(x) = Ta(x) + Tz(x) + Ta(x) + T(x)
Knowing that Ty(x) and T,(x} are none other than
+T(x) and x (= %, + x,), respectively, we have

TH) = Tyl + Told + 00 +x.  (4.1)

Since a systemn priority is higher than any user
priority, we can consider the following two facts:

(1) Our tagged process obtains a user priority
when it enters the UNIX system. It must wait
for the CPU until all the processes (these do not
include the sleeping processes) with system
priorities complete their required system times.
This delay is on the average the same as U,

(2) Also, if the processes enter the UNIX



system and issue new system calls during our
tagged process stay T(x), each of those processes
will get a system priority (by Assumption D in
Section 4.2). Our tagged process must wait until
new system calls generated by those processes
complete. This delay is on the average AT()t.
That is, A T(x) is the total number of new system
calls during our tagged process stay and then
each of the system call requirest,.

Thus, we have
Ty = U, + A,T(x)r. (4.2)

To derive U, in (42), we observe that U,
consists of the following two parts (i.e., U, and

U,):

(1) U, : Delay due to a process (if any) seizing
the CPU with a system priority.

Because of the nonpreemptive switching in
system mode, U,, is merely

t
U,, = ARL xp, = Ep, (4.3)

where ARL is the average residual life of system
time of a system call and g, = At

The idea in computing ARL is based on the
assumption that the system time required by the
process in a system priority is independently and
identically distributed with an arbitrary
distribution. This system time is renewed at the
instant the CPU starts serving a new process in
a system priority (refer to "Renewal Counting
Process” in Parzen [Ch. 5, 5] and Ross [pg. 284,
6] for more details). Therefore, (4.3) becomes

(4.4)

(2) U,, : Delay due to the processes with a

system priority that are found by our tagged
process.

This delay is on the average the same as the
average of the system time required by each
system call (v) times the average number of
processes in system mode found by our tagged
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process (L,). Note that I, excludes the process
(if any) seizing the CPU with a system prionty.
Thus,

U,, =tL, (4.5)

Using Little’s results (see Kleinrock [pg. 6, 4]),
we can see that, on the average, AW, processes
will be in system priorities. Thus,

L, =AW, (4)

where W, is the average duration of a system call
in a system priornity.

Substituting (4.6) for L, in (4.5),
U'z = %IW, = aW,. (47)

Since we assume that the arrival stream of the
system call is Poissonian and the duration of
system call follows an arbitrary distribution, the
average duration of a system call in a system
priority is given by

A&
*T1-a) (48)

Refer to Kleinrock [pg. 16, 4] to see details for
(4.8).

Substituting (4.8) into (4.7), we have

PRy
- (4.9)

Since U, = U, + U, from (4.4) and (4.9) we
obtain

AL

= W-a) (4.10)

The equation (4.10) indicates that the average
unfinished work U, is the same as the average
waiting time W, by a FCF$ discipline (refer to
Conservation Laws in Kleinrock [pg. 113-118, 4] for
more details). We can then rewrite (4.2) as

Ty(x) = YIA:-E._TJ + AT
M

= o (4.11)

+ AT .
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45 Derivation Of T,(x)

Our tagged process delay due to user time of
other processes Ty(x) is given by the average
modified unfinished work U',. In addition,
during our tagged process stay in the UNIX
system, there will be on the average AT{(x) new
arrivals, each of which requires an average of
%, . Thus, we have

Ta(x) = Uy + AT - (4_12)

1) Derivation of U",,

Recall that the behavior the processes in user
mode resembles that of the round-robin
scheduling algorithm and the overall delay in
user mode approaches the same delay as in the
round-robin scheduling algorithm (see Section
3.4). Therefore, we approximate U’ by using the
round-robin scheduling algorithm. Suppose that
a process is already in the UNIX system and
some of user time of that process has been
completed by the time our tagged process
arrives at the UNIX system. Now, we are
interested in the remaining user time of that
process. From the round-robin scheduling
algorithm, it is evident that every process, having
a remaining user time greater than x, seconds at
the instant our tagged process arrives at the
UNIX system, contributes x, seconds to U,
Also recall that the context switching overhead
between processes is negligible (see Assumption
Cin Section 4.2). If the remaining user time of
a process is more than x, seconds, the view point
of our tagged process changes. That is, our
tagged process views that process as if it left the
UNIX system upon completing x, seconds of its
remaining user time. Specifically, if a process
requires a user time of s seconds and has
received r seconds of the CPU service by the
time our tagged process arrives, a remaining
user time of the processis

B-T=Y.

Then, its contribution to U, 18

y Y<X
Xy YK

From the above, we obtain the truncated
remaining user time density function that is the
same as the residual life in the renewal counting
process. Ross [pg. 44, 7] derived the cumulative
density function (CDF) of the residual life as

.yf [1-F(t))ae

F(y) = ————, (4.13)

where F(t) is a cumulative distribution function

oo

of the required user time, and m = [[1-F(t)jat
1]

Thus, the truncated CDF of the remaining user

time is

R i‘“(Y) Y <%

Fx.,(Y) = 1 .
YZXy -

Now, the n® moment of F,(y) is derived by

applying the Laplace-Stieltjes Transform (see
Schrage [pg. 471, 9]) as

2= [PEFE) e PR, (414)

where F(y) is given by (4.13).

Letting n = 2 in (4.14), we obtain the modified
average unfinished work U, in (4.12) by using
Pollaczek-Khintchine (P-K) formula (see
Klieinrock [pg. 16, 4]) as follows.

)

= 2(1-p)

U

A{{y’i"(y) + %21 Flx)}

(4.15)

2(1-p)
2) Derivation of %

During our tagged process stay in the UNIX
system, each of the newly arrival processes delay

our tagged process an average of X, seconds.
Our tagged process, having visited the CPU n
times so far, must have received an amount of

user time equal to

Q=Ya,
i=1



where q is the i* quantum for our tagged
process and 1 <n<m.

Note that Q, is less than or equal to x, and

Qm = Eqn =Xy

i=1
Now, if the process that arrives at the UNIX
system after our tagged process has arrived

requires s of a user time, our tagged process
with @, will be delayed by that process as

ifs <x, -Qn

D(Qe) Z{;,-Qn fa2%,- Q.  (416)

The equation (4.16) becomes possible by
Assumption C in Section 4.2. This relationship
and (4.16) lead to the following truncated
distribution for our tagged process delay.

Frq,(8) = {i‘(s) : ;,:' _-3: ,

where F(s) is defined to be the required user
time distribution of processes.

The first moment of the above F,_q (s) is

% =
X5 -Cn
[ = d(e) + (- Qalft -Flw- Qa)l - (417)
Then, using (4.17) we have

— Qn —
D= — R 418
= I (+18)

Since we assumed all quanta are the same size
(see Assumption C in Section 4.2),

=J]4d
q“{qm

where q is the equal quantum size and q,, is the

for n=1,2, --- ,m-1
for n=m,

last quantum size.

Then, we have Q, = nq {forn=1,2,..,m-1). Since we
assumed all quanta shrink to negligibly small
amount (see Assumption C), we have q,wq
and Q,, /s mq.

Thus, (4.18) becomes
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EA
9 [ 2dB(a) + b -na)1 -Flxs - n) .(4.19)

Xan=1 0

Now, we rewrite (4.12) as

Tg(x) = '5(—1% + AT(XE‘ ' (4.20)
where Z and %, are given by (4.14) and (4.19),
respectively.

4.6 The Result Of the Analysis

The detailed procedures of deriving Ty(x) and
To(x) were shown in the previous settions.
Substituting (4.11) and (4.20) for Ty(x) and Ta(x)
in (4.1), respectively, the equation (4.1) can be
solved in terms of T(x) as

. N
_20-a)  201-a)
-+ B )

T() (4.21)

where
A, A and x were described in Section 4.3,

A 18 N,
2 is given by substituting 2 for n in (4.14),
o is Xy and

%, is given by (4.19).

Note the above T(x) is referred to as the average
conditional response time because it s
conditioned on the required CPU time of x
seconds.

5. A Case Study

If the required time of each system call and of
each arriving process follow the exponential, the
evaluation of (4.21) becomes straightforward.
The second moment of the exponential
distribution function is given by

;:2@2.

Thus, we have

2 =2(6), (5.1)
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(52)

(53)

X . 3
~ 7).

2, =1 [x:-ﬂe X
See the Appendix for (5.2) and (5.3).

Substituting (5.1), (5.2), and (5.3) into (4.21),
T(x) s

o =

- A | TR X x
x 4 + Nall-e -—e
1—P-t' 1-p [ *

.
%= ‘]
1-a + 1+ —j|e -4+
nfi 5]

Note that x=x, + %,

Now, we introduce the CPU factor, namely

= == 5.5
P= = (5.5)

Substituting x, = px from (5.5) into (5.4),
T(x) s

p=0,025050,075 10). This figure happens to
correspond to the case of exponential required
time of each system call and of each arriving
process with o, = 04, p, = 04,7 = 0.1, ¢, =
0.001, and x; = 0.01. From Figure 3 and (5.7),
we note the following facts:

a. Asthe CPU time (= system time + user
time) increases, the response time T(x)
increases.

b. As the CPU factor p increases, the
response time T{x) for a given CPU time x
increases. In addition, the upper bound
and the lower bound of T(x) are given
when p=0 and p=1, respectively. This
implies that the response time is greatly
influenced, not only by the processing
time (Le, CPU time), but also by the
CPU factor.

¢. Whenp = 0 (i.e., when an arriving process
does not require any user time ) T(x)
shows a linear increase. This linear
increase is also shown by equation (5.7)
for x,~0. This implies that a process
twice as long as some other will spend on
the average twice as long in the UNIX
system when ¢, and x, are negligibly small

B
P '% = = and g, + 4 << 1.
x+1p.t.+1_ml'“ l-e 'ﬂe
(5.6) y .
%% P
1-|a +pu 1+%[e"-]] + 7 2 L
10 pr03s
From (5.6), we have s
T{x) rs . or |
r : 08 |=
X+ T ¢
fx, —0 o
1-(a + 1 -
J e (57) [
B = 02 L =000
% + G 1-e ™ - % e™
! ! : ! [ *a - 0.6 ) - + ] \ I
\ 1- (p. + 0y + 1) Hxg—+ o0 0.0 oo2 004 0.08 0.08 0.10 a1z
secoma
I e gystem Lfke + Wmer Lime = X, + T,
. o (Fig. 3) Response Time Curves for Various
In Figure 3, we display the response time T(x) CPU factor p, g, = 0.4, p = 0.4,y = 0L, §, =
as function of x for wvarious p (ie, 0.001, and i = 0.0L.



d. Each arriving process will be delayed by at
least

l-p

_— fx—0.
1-{a + )

(58)
In other words, although the required
CPU time of an amiving process
approaches zero, the arriving process is
still delayed by the amount of (5.8).

6. Practical Considerations
8.1 Considerations Of The Paramneters

In practice, it is difficult to determine
Pur Pas 1, by %z and p in the derived response time
equation (4.21). We will show how to determine
those parameters in thizs section. The UNIX
sar(1) (ie, system activity reporter) gives
%sye, Fousr, Fwio, and %idle. For convenience, we
let %eys + %usr + ¥wio denote the portion of time
that the CPU it not purely idle. In contrast,
%idle denotes the portion of time that the CPU
is purely idle. Since a and s, are utilizations for
system time and user time, respectively, we have
the immedijate result such that

Yoaye = p and Fuar = p, .

The « was defined as the expected portion of
time that our tagged process waits for resources
(see Section 4.3). During T(x), our tagged
process is waiting for resources each time the
CPU is idle with some process waiting for
resources. Thus, we can have the following

conditional probability.

~ = pr{our tagged process iz waiting for resources
during its stay in the UNIX system}

= pr{the CPU is idle with some process waiting for rescurces
given that our tagged process stays in the UNIX syatem} .

As long as our tagged process stays in the UNIX
gystem, the CPU is either running in user mode,
running in system mode, or idle with some
process waiting for resources. In other words,

4. Fmys, Kusr, %owio, and Bidle represent the portion of

_ the time that the CPU runs in user mode, runa in gystemn

mode, is idle with some process waiting for block 1/0,
and otherwise is idle, respectively.
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the CPU can not be purely idle during the time
our tagged process stays in the UNIX system.

- Therefore, the above relationship becomes

~ = pr{the CPU is idle with some process waiting for resources /
the CPU is not purely idle}

= pr{the CPU is idle with some process waiting for resources ,
the CPU is not purely idle} /pr{the CPU iz not purelyidle}
%wio
%syl + %usr + Hwio
Kwio
P + Py + Fowio

Now, since the discussions in Section 5 are
expressed only for the exponential distribution,
we can pose a general question: will the same
discussions be valid for the other distributions
such as the Erlang-k, the unmiform, and any
arbitrary distribution ? To validate this, we need
to examine cases using other types of
distributions. Because of the complexity, we
omit this examination in this paper and leave it
for a fature research.

8.2 Validation Of The NMiodel

The following example demonstrates how to
apply our results to the practical field. We drew
sar(1) and asccom(l) data generated from an

4

T{s)

b oA

p =035

=000

a0 0.02 o4 0.08 o.o8 010 012
necomd

T = dyitem tithe + Wil LI = T, 4 T,

(Fig. 4) Response Time Curves for Various
CPU factor p, p. = 0.48, p, = 0.44, Fwio = 4%,
L~ 0,% = 0.012.



378 ERFZXCISEEE ==X H1E H3E (94 9]

IRM-3081 machine for 15 minutes. This
sampled data consisted of 6,306 processes. We
then computed the average of system call
duration, user time, and response time for the
sampled 6,306 processes such that

% R Dsec, g = 0012 sec, = 0.48, p, = 0.4, and Fowio = 0.04

Substituting these values into (5.7), we obtain
Figure 4. Then, we compared the sampled data
with Figure 4. That is, we plotted the sampled
response time from the UNIX OS running
IBM-3081 machine onto Figure 4 We then
found the sampled data appeared to lie more or
less along the lines in Figure 4. Because it is
straightforward, we do mnot display these
validation plots in this paper.

7. Conclusians

We have analyzed the response time of the
processes under the UNIX operating system.
We then presented a case study and an example
of the practical application in the case of the
exponential distribution. The results show the
response time of a process requiring a certain
CPU time is proportional to its CPU factor.
This implies that the process requiring the
larger portion of user time has the longer
response time; the UNIX operating system is
capable of providing an excellent response time
for the processes requiring system time at the
expense of the processes requiring user time.
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Appendix
Derivation of (5.2)

Since F(s) (ie, the required user time
distribution of processes) is of the exponential
distribution, the integral part of (4.19) gives

xgaq

[ #dF(s) + (% - m)[1 - P, - nq)]

o

oy - Ix]

w - il J—
ds + (% -nq)e . (A.l)

=—i-—fse
X O

s

Then, using the principle of integration by parts,
{A.1) becomes

Since a quantum q shrinks to a negligibly small



amount (see Assumption C in Section 4.2), we
have

Ao, o=
= mﬁm[ﬁ-ﬁiez Ee;‘]
40 X n=1
2 (=
=% + (i“—) e™ -1}.
X
Derivation of (5.3)

Similarly, substituting 2 for n in (4.14) and using
the principle of integration by parts, we can
obtain the equation (5.3).
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