• Title/Summary/Keyword: 실시간 수요 대응형 모빌리티

Search Result 4, Processing Time 0.02 seconds

Impact Assessment of an Autonomous Demand Responsive Bus in a Microscopic Traffic Simulation (미시적 교통 시뮬레이션을 활용한 실시간 수요대응형 자율주행 버스 영향 평가)

  • Sang ung Park;Joo young Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.70-86
    • /
    • 2022
  • An autonomous demand-responsive bus with mobility-on-demand service is an innovative transport compensating for the disadvantages of an autonomous bus and a demand-responsive bus with mobility-on-demand service. However, less attention has been paid to the quantitative impact assessment of the autonomous demand-responsive bus due to the technological complexity of the autonomous demand-responsive bus. This study simulates autonomous demand-responsive bus trips by reinforcement learning on a microscopic traffic simulation to quantify the impact of the autonomous demand-responsive bus. The Chungju campus of the Korea National University of Transportation is selected as a testbed. Simulation results show that the introduction of the autonomous demand-responsive bus can reduce the wait time of passengers, average control delay, and increase the traffic speed compared to the results with fixed route bus service. This study contributes to the quantitative evaluation of the autonomous demand-responsive bus.

Development of Biosignal-based Urban Air Mobility Emergency Response System (생체신호 기반 도심 항공 모빌리티 비상 대응 시스템 개발)

  • Gihong Ku;Jeongouk Lee;Hanseong Lim;Sungwook Cho
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • This paper introduces an emergency response system in urban air mobility scenarios. A biometric responsive smartwatch was designed to monitor passengers' real-time heart rates. When an anomaly was detected, the system would send an alert via Morse code vibration and voice notification. It was integrated with the assumed control system of the ROS environment and communicates to implement a system for generating the shortest path for emergency landing to a nearby vertical port during urban air mobility operations. System stability was verified through high-fidelity simulation environments and testing based on actual geographic locations. Our technology improved the reliability and convenience of urban air mobility, demonstrating its effectiveness through simulations and tests in real-world scenarios.

Road Sign Function Diversification Strategy to Respond to Changes in the Future Traffic Environment : Focusing on Citizens' Usability of Road Signs (미래 교통환경 변화 대응을 위한 도로표지 기능 다변화 전략: 시민의 도로표지 활용성을 중심으로)

  • Choi, Woo-Chul;Cheong, Kyu-Soo;Na, Joon-Yeop
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.30-41
    • /
    • 2022
  • With the advent of autonomous driving, personal mobility, drones, and smart roads, it is necessary to respond to changes in the road traffic environment in the road guidance system. However, the use of road signs to guide the road is decreasing compared to the past due to the advent of devices such as navigation and smartphones. Therefore, in this study, a large-scale survey was conducted to derive road sign issues and usage plans to respond to future changes. Based on this, this study presented a strategy to diversify road sign functions by analyzing the factors affecting the use of road signs by citizens. As a result, first, it is necessary to provide real-time variable road guidance information that reflects user needs such as traffic, weather, and local events. Second, it is necessary to informatize digital road signs such as reflecting maps with precision. Third, it is necessary to demonstrate road guidance in a virtual environment that reflects various future mobility and road environments.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.