• Title/Summary/Keyword: 실린더 형상

Search Result 171, Processing Time 0.032 seconds

Prediction of burial depth over time evolution at seabed (해저면에서 시간변화에 따른 매몰심 변화 예측)

  • Seungho Lee;Hyoseob Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.476-476
    • /
    • 2023
  • 해저면에 놓인 물체는 주변의 국소 흐름 변화에 의해 해저면 전단응력이 국부적으로 변화하는 과정에서 침식과 퇴적이 발생하게 되면서 해저면 지형의 변화에 의해 움직임이 발생한다. 이때 물체의 크기, 무게, 밀도와 형상에 따라 구름, 미끄러짐, 액상화 현상 또한 동반 될 수 있다. 본 연구에서는 해저면에 놓인 물체의 시간변화에 따른 매몰심 변화를 예측하고자 하였다. 물체는 원형 단면의 실린더 형태로 고려했다. 시간변화에 따른 매몰심 변화를 평형 매몰심으로의 접근속도에 관련된 인수와 매몰심 변화량으로 기본방적식을 구성하였고, 이를 유한 차분식으로 수립하였다. 최종 평형 매몰심 계산은 Friedrichs et al.(2016)의 경험식을 사용하였다. 앞선 연구에서 김효섭 등(2016)은 시간에 따른 세굴심 변화 모델 STEP-K를 제시한 바 있다. 시간변화에 따른 연직방향 실린더 주변에서의 국소세굴심을 예측하는 기법으로, 해저면에 놓인 수평방향 물체 주변의 매몰심 발달을 예측하기 위해 매몰 발생에 대한 시간의 척도를 새롭게 제안하였다. STEP-K에서 사용했던 KC수를 대신해 흐름-단주기 파랑 공조시의 해저면의 전단응력을 대표할 수 있는 대표전단응력을 사용할 수 있게 하였다. 보정계수를 통해 현장 또는 실험실 단위의 자료가 가용한 경우 식을 보정할 수 있다. 제안한 매몰심 예측기법은 Elmore et al.(2007)의 매몰실험 관측자료를 활용하여 보정하였다. 결과적으로 보정자료에 대한 시간에 따른 매몰심의 변화양상을 잘 재현하였으며, 향후 우리나라 해양환경 자료를 활용한 보정을 통해 적용성을 높일 수 있을 것으로 기대된다.

  • PDF

Stress Distribution Analysis for High Pressure CNG Pressure Vessel Using FEM (유한요소법을 이용한 고압 CNG압력용기 응력분포 해석)

  • Choi, Sang In;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.427-435
    • /
    • 2017
  • Most of the domestic city buses are equipped with the pressure vessels subjected to internal pressure applied by compressed natural gas. Pressure vessels subjected to internal pressure are used in various forms and purposes. Fuel is explosive and has flammable high pressure. The damage of the pressure vessel causes many property damage and loss of life. Safe design for pressure vessel is always necessary. Due to these reasons, many studies using finite element analysis have been conducted. In this paper, the stresses of cylindrical vessel and spherical dome were analyzed using ANSYS, a finite element analysis software. In order to verify the validity of the analysis, a model with a perfectly spherical shape of the dome was designed and observed. Based on the ASME standard in used, stress distribution was also analyzed for models designed with compressed natural gas(CNG). The FEM analysis software agreed with the theory when the dome shape was perfectly spherical. The model designed based on the ASME specification theory, stress concentration occurred in the knuckle part.

A Study on the Pressure Variation of Intake Pipe and the Volumetric Efficiency in a Multi-Cylinder Engine (다실린더기관 흡기관내의 압력변동과 체적효율에 관한 연구)

  • 서정일;조진호;김형섭;김병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1990
  • The characteristic of volumetric efficiency considering gas exchange process in a reciprocating engine is presented in this paper. The characteristic method is used for solving gas exchange problems of engine system in theoretical studies. The validity of the simulation is investigated by a comparison with the results obtained by the experiment which have been performed on the practical 4-cycle, 4-cylinder gasoline engine. The relationship between the volumetric efficiency and the intake pressure variation according to configuration of intake pipe, position of branch point, valve timing, compression ratio is clarified through simulation and experiment. The results predicted by the simulation are found to be in approximate agreement with those obtained by the experiment.

A Study on Ejector Performance Characteristics by Ejector Geometry/Performance Variables (이젝터 형상/성능 변수에 따른 이젝터 성능 특성에 관한 연구)

  • Choi, Ji-Seon;Yu, I-Sang;Shin, Dong-Hae;Lee, Hee-Jun;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.496-502
    • /
    • 2018
  • In this study, experimental and analytical studies were carried out to observe the phenomenon of aerodynamic throat formed according to the primary flow and secondary flow momentum of the ejector. The equilibrium interval of the aerodynamic throat, which is the main variable of the ejector performance, was observed through the experiment using the cold flow experiment and the analysis using FLUENT. Performance characteristics were investigated by the change of the primary flow rate and the throat diameter of the ejector cylinder. As a result, the performance of the standard ejector was confirmed to be within the range of 0.33~1.167(off-design/design) and cylinder throat diameter range of 1~1.17(off-design/design area ratio).

A study on combustion instability of solid rocket motor with cylinder-slot grain (실린더-슬롯형 그레인을 가진 고체로켓모터의 연소불안정 연구)

  • Lee, Dohyung;Kim, Hongjip
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • Combustion instability occurred in the combustion test of solid rocket motor with large aspect ration Length/Diameter (L/D) and cylinder-slot grain. As a result of spectral analysis of the pressure perturbation, it was confirmed that the central axis longitudinal frequency was dominant, so that the length of the cylinder part was increased to eliminate the coincidence with acoustic node. In addition, acoustic modal analysis and flow analysis were performed to analyze the cause of instability by unsteady flow structure in solid rocket motors. It was confirmed that the combustion instability is reduced by quantitative comparison of the amplitude and frequencies of the pressure inside the combustion chamber using the grain shape before and after the design change. Finally, a combustion test was performed to verify that the combustion instability was resolved as in the flow analysis.

A Feasibility Study in Forestry Crane-Tip Control Based on Kinematics Model (1): The RR Manipulator (기구학적 모델 기반 임업용 크레인 팁 제어방안에 관한 연구(1): RR 매니퓰레이터)

  • Kim, Ki-Duck;Shin, Beom-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.287-301
    • /
    • 2022
  • This study aims to propose a crane-tip control method to intuitively control the end-effector vertically or horizontally for improving the crane work efficiency and to confirm the control performance. To verify the control performance based on experimental variables, a laboratory-scale crane was manufactured using an electric cylinder. Through a forward and reverse kinematics analysis, the crane was configured to output the position coordinates of the current crane-tip and the joint angle at each target point. Furthermore, a method of generating waypoints was used, and a dead band using lateral boundary offset (LBO) was set. Appropriate parameters were selected using bang-bang control, which confirmed that the number of waypoints and LBO radius were associated with positioning error, and the cylinder speed was related to the lead time. With increased number of waypoints and decreased LBO radius, the positioning error and the lead time also decreased as the cylinder speed decreased. Using the proportional control, when the cylinder velocity was changed at every control cycle, the lead time was greatly reduced; however, the actual control pattern was controlled by repeating over and undershoot in a large range. Therefore, proportional control was performed by additionally applying velocity gain that can relatively change the speed of each cylinder. Since the control performed with in a range of 10 mm, it was verified th at th e crane-tip control can be ach ieved with only th e proportional control to which the velocity gain was applied in a control cycle of 20 ms.

Part1 : Numerical Code Validation and Quantitative Analyses of Ice Accretion around Airfoils (Part1 : 익형 주위 결빙 예측 코드 검증 및 정량적 분석)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1094-1104
    • /
    • 2010
  • In the previous studies, the validation of numerical codes has been conducted based on the qualitative comparison of predicted ice shapes with experiments, which poses a significant limit on the systematic analysis of ice shapes due to the variation of meteorological conditions. In response to this, the numerical code has been quantitatively validated against available experiment for the ice accretion on cylinders and airfoils in the present study. Ice shapes accumulated on the bodies are systematically investigated with respect to various icing parameters. To this end, maximum thickness, heading direction and ice thickness are quantified and expressed in the polar coordinate system for the comparison with other numerical results. By applying the quantitative analysis, similar shapes are intuitively distinguished. The developed numerical code underestimates the ice accretion area and the ice thickness of lower surface. In order to improve the accuracy, further accurate aerodynamic solver is required for the water droplet trajectories.

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.

Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF

Design of a Push-Pull Type High Power Ultrasonic Transducer by using the PEM (유한요소해석을 이용한 푸쉬-풀형 고출력 초음파 트랜스듀서 설계)

  • 윤양기;강국진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.107-114
    • /
    • 2000
  • This work is aimed to develop a new type of the Push-Pull ultrasonic transducer that can provide higher sound pressure level and simpler internal structure than conventional types. The driving part of the newly designed transducer is positioned in the middle of the cylinder, and its optimum geometry is determined by using the FEM package, ANSYS. Through FEM model analysis, the effects of all of its geometrical variables such as transducer length, transducer radius, and the edge shape of the end cap have been examined, and the results have led to the optimum geometry. The newly designed transducer has been found to give better performance than that of traditional ones.

  • PDF