• 제목/요약/키워드: 실린더 주위 유동

검색결과 130건 처리시간 0.028초

2-D URANS에 의한 원형 실린더 주위의 와류유출 유동 수치해석 (Flow Simulation past a Circular Cylinder by 2-D URANS)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.48-54
    • /
    • 2004
  • Vortex-shedding flows past a circular cylinder for 200≤ Re ≤ 5000 are numerically simulated with the PowerCFD code, using a finite volume method and an unstructured grid system, developed by the author. The simulation is peformed by solving the unsteady 2-D Wavier-Stokes equations with both no model and turbulence model. The resulting Reynolds number dependence of the Strouhal number and of the drag and lift coefficients is compared with both experiments and previous numerical results. It is found that, in the range of 200≤ Re ≤ 5000 the calculation method with a turbulence model is capable of producing reasonably more accurate results than that with no model for the main practically relevant parameters such as Strouhal number, drag and lift coefficients.

격자 변형 기법을 사용한 운동하는 2차원 실린더 주위의 유동 해석 (ANALYSIS OF TWO-DIMENSIONAL FLOW AROUND AN OSCILLATING CYLINDER USING MOVING MESH TECHNIQUES)

  • 이희범;이신형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.542-547
    • /
    • 2010
  • Recently, thanks to advanced computational power and numerical techniques, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation which are frequently encounterd in fluid-structure interaction and/of six degree-of-freedom problems. There are several moving mesh techniques such as the Laplacian operator based, tension spring based and elastic deformation based methods. In the present study, the Laplacian operator based method was utilized and the results were validated. For the validation, the flow around an oscillating two-dimensional cylinder was simulated and analyzed.

  • PDF

진동하는 두 개의 실린더 주위의 유동특성에 관한 연구 (A Study of Flow Characteristics of Two Oscillating Cylinders)

  • 이대성;윤현식;하만영
    • 대한기계학회논문집B
    • /
    • 제31권6호
    • /
    • pp.566-573
    • /
    • 2007
  • Flows around two oscillating cylinders in side-by-side arrangement at Re=185 are simulated using an immersed boundary method. The cylinders oscillate vertically in opposite directions in uniform cross-flow. We describe flow patterns, drag and lift forces by varying distance between two cylinders $(1.4{\leq}g{\leq}2.2,\;1.0{\leq}g{\leq}1.8)$ and oscillating frequency ratios $(f_e/f_o=0.8,\;f_e/f_o=1.0\;and\;f_e/f_o =1.2)$. Wake patterns, drag and lift coefficients are affected by both of frequency ratio and gap between two cylinders. Near wakes of each case are classified with the definition of previous studies.

유체-구조 연성 기법을 사용한 움직이는 2차원 실린더 주위의 유동 해석 (Fluid-structure interaction analysis of two-dimensional flow around a moving cylinder)

  • 이희범;이신형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.68-74
    • /
    • 2011
  • Recently, thanks to the advanced computational power and numerical methods, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation, which are frequently encountered in fluid-structure interaction and/or six degree-of-freedom problems. In the present study, the staggered loosely coupling algorithm was used for fluid-structure interaction and the Laplacian operator based technique was used for moving mesh. For the verification of the developed computational method, the flow around a two-dimensional cylinder was simulated and analyzed.

  • PDF

삼차원 천이영역에서 원형 실린더 주위의 유동 (Flow over a Circular Cylinder in Three-Dimensional Transitional Regimes)

  • 김진성;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.956-961
    • /
    • 2003
  • Direct numerical simulations of flow over a circular cylinder are performed at two different Reynolds numbers (Re=220 and 300) that correspond to three-dimensional instabilities of mode A and mode B, respectively, to investigate the characteristics of drag and lift at these Reynolds numbers. The drag and lift coefficients are measured locally along the spanwise direction and their characteristics are studied in detail. The variation of total drag in time is large at Re=220, and the total drag becomes minimum when vortex dislocation occurs in the wake. The drag and lift variations in space are also closely associated with the evolution of vortex dislocation at this Reynolds number. At Re=300, vortex dislocation is not found in the wake and temporal variations of drag and lift are much smaller than those at Re=220, but their spatial variations are quite large due to the near-wake secondary vortices existing in the mode B instability.

  • PDF

대형 와 모사법 (LES)을 이용한 사각 실린더 주위의 난류 유동장 해석 (Large Eddy Simulation of Turbulent flow around a Square Cylinder)

  • 전호환;정광효;윤현식
    • 대한조선학회논문집
    • /
    • 제43권6호
    • /
    • pp.675-682
    • /
    • 2006
  • This study has investigated the turbulent flow around a square cylinder by using LES (large eddy simulation). Numerical simulations are performed for turbulent flow fields with Re = 22,000. The computed results are in good agreement with existing computational and experimental data. The time-averaged and phase-averaged turbulent statistics around a square cylinder are discussed. Total 20 phase bins extracted from one cycle period showed detailed wake structures of the phase-averaged flow field. The center of Karman vortex sheets did not deviated ${\pm}0.5$ from centerline of square cylinder while moving downstream.

입자와법에 의한 급 출발하는 타원형 실린더 주위 유동해석 (Numerical study of Flow around Impulsively Started Elliptic Cylinder using Vortex Particle Method)

  • 주남수;이상환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1601-1606
    • /
    • 2004
  • In this paper, the unsteady behavior of the viscous flow field past an impulsively started elliptic cylinder is studied numerically. In order to analyze flow field, we introduce vortex particle method. The vorticity transport equation is solved by fractional step algorithm which splits into convection term and diffusion term. The convection term is calculated with Biot-Savart law, the no-through boundary condition is employed on solid boundaries. The diffusion term is modified based on the scheme of particle strength exchange. The particle redistributed scheme for general geometry is adapted. The flows around an elliptic cylinder are investigated for various attack angles at Reynolds number 200. The comparison between numerical results of present study and experimental data shows good agreements.

  • PDF

종횡비 변화에 따른 사각실린더 주위의 유동 특성에 관한 수치적 연구 (A Numerical Study on Flow Characteristics Around Rectangular Cylinder with Different Width-to-height Ratios)

  • 박용갑;손창민
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.523-529
    • /
    • 2010
  • We investigate two-dimensional laminar flow around rectangular cylinders placed in a uniform stream. Numerical simulations are performed, using finite volume method, in the ranges of $50{\leq}Re{\leq}150$ and $0.1{\leq}W/H{\leq}1.0$, where Re and W/H are the Reynolds number and the width-to-height ratio, respectively. The immersed boundary method is used to handle the rectangular cylinder in a rectangular grid system. Comparisons with the previous results show good agreement in Strouhal number, drag and lift coefficient. The present study reports the detailed information of flow structure at different width-to-height ratios in the ranges of $50{\leq}Re{\leq}150$.

입자와법에 의한 급 출발하는 타원형 실린더 주위 유동해석 (Numerical Study of Flow Around Impulsively Started Elliptic Cylinder Using Vortex Particle Method)

  • 이상환;주남수
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.809-817
    • /
    • 2004
  • In this paper, the unsteady behavior of the viscous flow field past an impulsively started elliptic cylinder is studied numerically. In order to analyze flow field, we introduce vortex particle method. The vorticity transport equation is solved by fractional step algorithm which splits into convection term and diffusion term. The convection term is calculated with Biot-Savart law, the no-through boundary condition is employed on solid boundaries. The diffusion term is modified based on the scheme of particle strength exchange. The particle redistributed scheme for general geometry is adapted. The flows around an elliptic cylinder are investigated for various attack angles at Reynolds number 200. The comparison between numerical results of present study and experimental data shows good agreements.

원형 실린더 주위의 고온 유동에서 입자의 부착 해석 (Simulation of the Particle Deposition on a Circular Cylinder in High-Temperature Particle-Laden Flow)

  • 정석민;김동주
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.73-81
    • /
    • 2019
  • Numerical simulations are performed for the thermal fluid flow around a circular cylinder, and the particle trajectories are calculated to investigate the particle motions and deposition characteristics. We aim to understand the effects of three important parameters (particle Stokes number, temperature difference in the flow and on the cylinder surface, and thermal conductivity ratio between the fluid and the particles) on the deposition efficiency. The results show that the thermophorectic effect is insignificant for particles with large Stokes numbers, but it affects particles with small Stokes numbers. The deposition efficiency increases with the increase in temperature difference between the flow and the cylinder or the decrease in ratio of thermal conductivity of the particles to the fluid. When thermophoresis becomes significant, the particles are deposited even on the back side of the cylinder.