• Title/Summary/Keyword: 실린더 좌표

Search Result 23, Processing Time 0.017 seconds

Simulation of Natural Gas and Pulverized Coal Combustion using 93-PCGC-2 (93-PCGC-2을 이용한 천연가스 연소와 미분탄 연소 모사)

  • 조석연;서경원;이진욱
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.50-55
    • /
    • 1995
  • 향상되어진 93-PCGC-2는 기존의 PCGC-2와 같이 미분탄 연소를 포함하는 다양한 반응성흐름과 비반응성 흐름을 설명하기 위해 2차원 정상상태 모델로 제시되어 졌다. 93-PCGC-2는 실린더형의 축 대칭계에 응용되어질 수 있고, 난류(Turbulence)는 유체역학식과 연소기구 양쪽을 위해 고려되어졌으며, 불연속 세로좌표 방법(Discrete Ordinates Method)을 이용하여 기체, 벽 및 입자들로부터의 복사열(Radiation)을 모사하였다. 입자상은 입자 무리들의 평균 경로들을 따라 해석하는 Lagrangian계의 해석법으로 모델화되어졌다. 석탄의 팽윤(Swelling)과 촤의 반응성에 관한 부모델과 더불어 새롭게 일반화된 석탄 탈휘발화 부모델 (FG-DVC)도 첨가되어졌다. 비균일 반응기구는 확산과 화학반응 둘 모두를 고려하였다. 주요 기상반응은 국부 순간 평형을 가정하여 모델화하였다. 그래서 반응속도는 혼합의 난류속도에 의해 제한되어진다. Thermal NOx과 Fuel NOx의 유한속도 화학론(Finite Rate Chemstry)에 대한 부모델은 화학반응속도론와 난류성의 통계치를 통합하여 만들어져 있다. 기상은 반복적인 line-by-line기교에 의해 풀려지는 elliptic partial differential equation으로 묘사되어진다. 수치적인 안정을 고려하기 위해 under-relaxation이 이용되어졌다. 이렇게 코드화된 93-PCGC-2는 연소를 위해 모사되어졌다. 또한 더 나아가 이 수치모델의 활용범위는 미분탄의 가스화에도 활용되어질 것으로 기대되어진다.

  • PDF

Analysis of Flow Around A Rigid Body on Water-Entry & Exit Problems (접수와 이수 문제에서 강체주위 유동해석)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.37-47
    • /
    • 1999
  • A Finite Volume Method for the discretization of the two-dimensional incompressible Navier-Stokes equation is used to analyse water entry & exit problems in a generalized coordinate system. The free-surface deformations generated by the water entry or exit of a rigid body are simulated by the Level-Set scheme[11]. In the water entry problems for a wedged section and a flared-ship section, the calculation results of water impact force are compared with the experimental results[5] and the time varying free-surface deformations and flow characteristics of the water exit of a cylinder are investigated.

  • PDF

Image-based Absorbed Dosimetry of Radioisotope (영상기반 방사성동위원소 흡수선량 평가)

  • Park, Yong Sung;Lee, Yong Jin;Kim, Wook;Ji, Young Hoon;Kim, Kum Bae;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.86-92
    • /
    • 2016
  • An absorbed dose calculation method using a digital phantom is implemented in normal organs. This method cannot be employed for calculating the absorbed dose of tumor. In this study, we measure the S-value for calculating the absorbed dose of each organ and tumor. We inject a radioisotope into a torso phantom and perform Monte Carlo simulation based on the CT data. The torso phantom has lung, liver, spinal, cylinder, and tumor simulated using a spherical phantom. The radioactivity of the actual absorbed dose is measured using the injected dose of the radioisotope, which is Cu-64 73.85 MBq, and detected using a glass dosimeter in the torso phantom. To perform the Monte Carlo simulation, the information on each organ and tumor acquired using the PET/CT and CT data provides anatomical information. The anatomical information is offered above mean value and manually segmented for each organ and tumor. The residence time of the radioisotope in each organ and tumor is calculated using the time activity curve of Cu-64 radioactivity. The S-values of each organ and tumor are calculated based on the Monte Carlo simulation data using the spatial coordinate, voxel size, and density information. The absorbed dose is evaluated using that obtained through the Monte Carlo simulation and the S-value and the residence time in each organ and tumor. The absorbed dose in liver, tumor1, and tumor2 is 4.52E-02, 4.61E-02, and 5.98E-02 mGy/MBq, respectively. The difference in the absorbed dose measured using the glass dosimeter and that obtained through the Monte Carlo simulation data is within 12.3%. The result of this study is that the absorbed dose obtained using an image can evaluate each difference region and size of a region of interest.