• Title/Summary/Keyword: 실리콘 차단제

Search Result 15, Processing Time 0.022 seconds

Development of Gas-mask Spectacles (방독면 안경 개발)

  • Lee, Jeung-Young;Parkm Jeong-Sik;Jang, Woo-Yeong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.9-12
    • /
    • 2008
  • Purpose: Current gas-mask is very uncomfortable structure for spectacles wearer. Improving this problem can aid military men and firemen to protect themselves and rescue other person. Methods: we changed the structure from dual type of outward lens and inward lens into a single type structure. we attached acrylic frame to gas-mask instead of outward lens and protected the gas inflow by shutting the gab of lens and frame using silicon shield, and made the frame "S" style for removing astigmatism and maintaining of vertex distance. Results: It was possible to correct visual acuity and gas shield, and could changed the lens like a common spectacles. The new type of gas-mask spectacles could remove 0.53D~1.78D astigmatism occurred from the slant of eyesight and lens surface, 0.07D~0.66D overcorrection occurred from short vertex distance, and 0.1D~0.3D astigmatism occurred from pantoscopic angle. Conclusion: Because new type of gas-mask spectacles had clear visual field, it was expected to improve fighting power and rescue ability.

  • PDF

Characterization of Hydrogel Tinted Contact Lens Containing 4-iodoaniline using Titanium Silicon Oxide Nanoparticles as Additive (티타늄 실리콘 옥사이드 나노입자를 첨가제로 사용한 4-iodoaniline을 포함한 하이드로젤 착색 콘택트렌즈의 특성)

  • Cho, Seon-Ahr;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.315-322
    • /
    • 2014
  • Purpose: The physical and optical characteristics of hydrophilic tinted contact lens containing titanium silicon oxide nanoparticles and the basic hydrogel contact lens material containing 4-iodoaniline were examined. In this study, the utility of titanium silicon oxide nanoparticles as a UV-blocking material for ophthalmologic devices were investigated by measuring the UV transmittance of the produced polymer. Also, titanium silicon oxide nanoparticles only without the addition of 4-iodoaniline in primary contact lens materials by copolymerizing two groups were compared. Methods: For manufacturing hydrogel lens, HEMA, MA, MMA, 4-iodoaniline and a cross-linker EGDMA were copolymerized in the presence of AIBN as an initiator. Also, the titanium silicon oxide nanoparticles was used as additive. After polymerization the physical properties such as water content, refractive index, contact angle and spectral transmittance of produced contact lenses were measured. Results: Measurement of the physical properties of the copolymerized material showed that the water content, refractive index, UV-B transmittance and contact angle were in the range of 35.01~38.60%, 1.4350~1.4418, $34.15{\sim}57.25^{\circ}$ and 1.0~10.0%, respectively. Titanium silicon oxide nanoparticles is not used as an additive in the experimental group, the results of the measurement showed that the water content, refractive index, contan angle and UV-B transmittance of the hydrogel lens polymer was 34.00~36.80%, 1.4378~1.4420, $40.15{\sim}60.16^{\circ}$ and 1.8~25.0%, respectively. Conclusions: Also, the transmittance for UV light was reduced significantly in combinations containing titanium oxide nanoparticles.

The effect and stability of plant extract ingredient as uv absorber (자외선 흡수제로서의 식물추출성분의 안정성과 효과)

  • 김경동;이용두;박성순;윤성화;이석현
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-58
    • /
    • 2000
  • Recently the harmfulness of W radiation is in creasing due to encironmental pollution. Environmental population may also play a role in global decrease of ozone layer, A major consequence of ozone depletion is increase in solar ultra violet radiation received at the earth's surface excessive exposure to W radiation cause a lot of problems in our skin. Plant extract that possess antioxidative activities has been reported to retard the oxidation process in product to which they have been added. Plant are alived under solar light. So it is expect the plants have so many protection mechanisms and UV absorbent ingredients against ultra violet radiation such as UVB, UVA. Plant extract which were flavonoids, alkaloids and others could be transformed into UV absorber by chemical modification. Therefore with the aim of finding alternative natural absorber that can safely be used in cosmetic, we have screened various extract for their UV absorbent effect. Thus, the cosmetic safety against human skin, antimicrobial effects and others could be improved by using the silicon.

  • PDF

Effect of Filler and Additive on Performance of Cycloalipatic Epoxy Used for Outdoor Insulators (Cycloaliphatic계 에폭시 절연재료의 옥외성능에 미치는 충전재 및 첨가물의 영향)

  • 연복희;박충렬;허창수;심대섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.30-37
    • /
    • 2002
  • This paper reports on the results of weathering test, tracking test and salt-fog test of various kinds of cycloaliphatic epoxy systems. UV irradiation dramatically induced the loss of surface hydrophobicity due to the chain scission attack at the surface under UV irradiation. It could be seen that samples containing an UV absorbent/antioxidant and a silicone oil additive have a good performance in weathering test, while ATH(alumina tri-hydrate) filled ones have high resistance against tracking failure than others. Under salt fog chamber test, specimens mixed with silicone oil are able to suppress leakage current development. It was thought that silicone oil mixed into cycloaliphatic epoxy system could lead to lower the surface energy and to retain hydrophobic properties for a long time, which are desirable for outdoor use.

A study on the functional coatings using silicone resin of Architectural membrane structures products (건축용 막구조 제품의 실리콘 기능성 코팅에 관한 연구)

  • Choi, Yun-Sung;Lee, Jang-Hun;Yoon, Nam-Sik;Kim, Su-Hong;Yoo, Gu-Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.106-106
    • /
    • 2012
  • 막구조(Membrane structure)란 건축분야에서 "fabric structure" 또는 tension structure"와 같이 사용되는 용어로 코팅된 직물(coated fabrics)을 주재료로 사용하는 구조를 말한다. 특히 구조체로서 연성의 막을 이용 이것에 초기 장력을 주어 강성을 늘림으로서 외부하중에 대하여 안정된 형태를 유지하는 장점을 갖고 있다. 초기 창안된 독일의 온화한 기후에 적용되는 반면 한국이나 일본에는 60m/sec를 넘나드는 태풍의 피해와 많은 적설량을 보이는 기후적 제약으로 발달되지 못하였다. 그러나 최근 새로운 소재의 막구조 제품 개발과 구조해석 방법 및 시공기술 등이 개발되어 보편화되어지고 있는 실정이다. 막구조용 재료로 사용되는 섬유소재는 주로 Polyester직물을 기재로 한 PVC 코팅 제품으로 일반 PVC 막재는 장력이 약하고, 광선에 의한 물성이 쉽게 변화되어 내구연한이 5~15년에 불과하다. 유리섬유나 아라미드섬유 등으로 제직한 기재에 고내열 실리콘이나 PTFE 수지를 코팅한 제품은 약품에 대한 내구성이 높고 자외선에 대해서는 매우 큰 저항성을 가지기 때문에 내구연한이 10년에서 30년 까지도 향상된다. 그러나 실리콘 코팅막은 세계적으로 가장 좋은 막재로 알려졌으나 자정능력(Self Cleaning)에 문제가 발생되어 사용량이 감소 추세라고 할 수 있다. 일반적인 코팅 가공의 경우 MEK, Toluene, DMF 등과 같은 유기용제를 다량 사용함에 따라 작업환경 및 대기오염, 화재 위험 등의 문제점이 있으며 특히 가공시 잔류되는 유기용제의 심각성이 대두되고 있는 상황이다. 이와 같이 코팅 가공제 자체를 친환경적인 물질로 대체하여 각종 환경규제에 대응하고 유해 폐기물의 발생을 줄일 수 있는 코팅 가공제 및 가공기술 개발이 절실하다. 이에 본 연구에서는 Glass-Fiber, Aramid 등의 슈퍼 섬유와 고 강력 섬유 등을 이용하여 PTFE 코팅제품과 비슷한 수준의 성능을 부여하는 무용제형 실리콘 코팅 수지를 개발하고 내구성능 향상, Self Cleaning성, 난연성, 자외선 차단, 인장강도 및 인열 강도의 향상 등 다양한 기능성을 부여하는 최적의 환경 친화적 코팅 공정 기술을 개발하여 차세대 건축용 막구조 제품을 개발하고자 한다.

  • PDF

Evaluation of Concrtet Properties Using Silicon-Based Repellent (실리콘기반 침투강화제를 사용한 콘크리트의 내구특성 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Lee, Byung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • Currently, the most commonly used decontamination agent in the country is calcium chloride, and the use of decontamination agents nationwide is on the rise due to climate change in the country. The deicing agent, aimed at deicing snow, is sprayed and the chloride is frozen and thawed by the dissolved surface water, causing various damages such as deterioration to the concrete. Therefore, in this study, the reactive urethane polymer was manufactured to coat concrete surface protection material, which is a method that prevents moisture from externally penetrating by applying to concrete surfaces, and the mixing agent was selected through the size control of molecules and surface modification, and the properties of penetrant stiffening agents and the application method of concrete was evaluated.

Elastomeric High Barrier Materials for Vehicle (고차단성 자동차 부품용 고무소재)

  • Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.2-9
    • /
    • 2011
  • Permeability to gases and vapors is an important function in tires, rubber tubes and diaphragms. It mainly depends on the rubber material. Generally, permeability increases in the following order: silicone rubber > NR > EPDM > SBR > NBR > FPM > ECO > IIR. And, for an elastomer permeability is also very much dependent on compounding. Many research works are reported in the area of gas permeability for formed rubber,$^{1-7}$ however, few studies are found for unformed elastomer products. Incorporation of nano-particles, use of thermoplastic elastomers and applying high barrier multilayer coatings are the main approaches to obtain a high barrier elastomeric product. In this paper, barrier article for vehicle is introduced.

Mechanical Properties on Resin of New Austrian Tunneling Coatings on Stainless Steel 316L (스테인레스강 316L 상의 New Austrian Tunneling Method Coatings의 수지에 관한 기계적 특성)

  • Lee, Jooyoub;Sung, Wanmo;Kim, Joohan;Seong, Minjeong;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.1034-1040
    • /
    • 2020
  • The mechanical properties of NATM resin of synthetic polyurethane-epoxy resin for stainless steel were measured by SEM, FT-IR, tensile properties, and specific mass loss by EIS analysis, etc. As interest in eco-friendly medium coatings increased, the Heavy duty coatings were synthesized for various metals such as stainless steel composed of Polyol, MDI, water bored Epoxy resin, filling agent, silicon surfactant, catalyst etc. The coatings of synthetic NATM resin were increased tensile strength due to various temperature change, and the low-Specific Mass Loss was measured in a highly electrolytic solution. In conclusion, the NATM coatings composed of polyurethane and waterbored Epoxy, polyurea resin were synthetic microstructure with cross linkage can be good material for coating of anticorrosion of metal substrates such as stainless steel.

A Study on Properties of Polyurethane-Epoxy Hybrid Coatings on Stainless Steel 316L at Various Temperatures (스테인레스강 316L의 다양한 온도에서 폴리우레탄-에폭시 복합코팅 특성에 관한 연구)

  • Sung, Wanmo;Kim, Kijun;Kim, Joohan;Seong, Minjeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1358-1364
    • /
    • 2019
  • The mechanical properties of Heavy duty resin of synthetic polyurethane-epoxy resin for stainless steel were measured by SEM, FT-IR, tensile properties, and specific mass loss by EIS analysis, etc. As interest in eco-friendly medium coatings increased, the Heavy duty coatings were synthesized for various metals such as stainless steel composed of Polyol, MDI, water bored Epoxy resin, filling agent, silicon surfactant, catalyst etc. The coatings of synthetic Heavy duty resin were increased tensile strength due to various temperature change, and the low-Specific Mass Loss was measured in a highly electrolytic solution. In conclusion, the Heavy Duty coatings composed of polyurethane and waterbored Epoxy resin were synthetic microstructure with cross linkage can be good material for coating of anticorrosion of metal substrates such as stainless steel.