• Title/Summary/Keyword: 실리콘카바이드

Search Result 88, Processing Time 0.024 seconds

Removal of SF6 over Silicon Carbide with Aluminium Oxide by Microwave Irradiation (마이크로웨이브 조사에 따른 산화알루미늄이 함유된 실리콘카바이드의 SF6 제거)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.240-246
    • /
    • 2013
  • $SF_6$ is the most important greenhouse gas with the highest GWP (global warming potential). The $SF_6$ decomposition study was performed with silicon carbide with aluminium oxide by microwave irradiation. DRE (Decomposition and Removal Efficiencie) of $SF_6$ were evaluated by GC-TCD unit using 3,000 ppm $SF_6$ gas. DRE of $SF_6$ was increased by $Al_2O_3$ contents to 10~30 wt%, otherwise $Al_2O_3$ content of 40~50 wt% was decreased. DRE of $SF_6$ up to 99.99% have been achieved in SiC-$Al_2O_3$ (20 wt%) and SiC-$Al_2O_3$ (30 wt%) above $900^{\circ}C$. Also, the DRE of SiC-$Al_2O_3$ (30 wt%) at $700^{\circ}C$ showed 96.72%. In addition to consideration microwave input energy and $Al_2O_3$ content, SiC-$Al_2O_3$ (30 wt%) can be suggested the best material to control $SF_6$. The results of this study suggest it is important to control content of $Al_2O_3$ in SiC for decomposition of $SF_6$ with microwave energy.

Tribological Characteristics of Sliding Contact between Deferent Combinations of Ceramics (미끄럼 접촉시 이종세라믹 간의 트라이볼로지적 특성)

  • Kim Bupmin;Kim Seock-sam;Shin Dongwoo;Yoon Sang-bo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.296-300
    • /
    • 2004
  • Currently. the study on structural ceramic helps to suggest the precise data of friction and wear in accordance with the various conditions in operations. Also, the study helps to predict effective operating conditions by monitoring the occurrence of wear transition. The studies in the Past were mainly concentrated in using identical materials. However, it is highly likely to have unqualified data from the differences of mechanical and chemical properties between ceramic materials. Thus, in this study, through conducting the ball-on-disk type wear testing, the different ceramic materials has been used to consider tribological characteristics between different ceramic materials. We conducted the wear test by using three kinds of specimen which are zirconia, alumina and silicon carbide against zirconia. We have changed the sliding velocity and the loading conditions in this test and found out that there is row friction coefficient and wear rate in the combination of zirconia and silicon carbide.

  • PDF

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

A Study on Improvement of the Ablation Resistance of Two Types of the Carbon/Carbon Composites by HfC Coating (하프늄카바이드 코팅을 통한 2종형상의 탄소/탄소복합재의 내삭마성 향상연구)

  • Kang, Bo-Ram;Kim, Ho-Seok;Oh, Phil-Yong;Choi, Seong-Man
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.205-212
    • /
    • 2020
  • In this study, HfC was coated on two types of carbon/carbon composites coated with SiC by vacuum plasma spraying(VPS). The experiment was performed using a plasma wind tunnel with heat flux of 5.06 MW/㎡ for 120 s heat flux before and after the coating. The mass ablation rate was calculated through the mass change before and after the test, and the length change was measured by using calipers and high speed camera. The oxidation/ablation behavior were observed by FE-SEM with EDS analysis of the specimens cross section. The plasma wind tunnel test results showed that the coated specimens had low weight loss and length change, and high oxidation/ablation resistance. However, two types of the specimens tested under the same conditions were different in the ablation behavior and ablation rate, and it was evaluated that the cylindrical type had higher oxidation/ablation resistance.

The Performance Evaluation of C/SiC Composite for Rocket Propulsion Systems (추진기관용 C/SiC 복합재료의 특성 평가)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.433-438
    • /
    • 2009
  • The main objective of this research effort is to develop the performance of C/SiC composites manufactured by LSI (Liquid Silicon Infiltration) method for solid and liquid rocket propulsion system and ensure the performance analysis technique. The high performance and reliability of C/SiC composite are proved for solid and liquid rocket propulsion system. And the performance analysis technique related to mathematical ablation model is originated.

  • PDF

Electrochemical Characteristics of 2-Dimensional Titanium Carbide(MXene)/Silicon Anode Composite Prepared by Electrostatic Self-assembly (정전기적 자가결합법으로 제조된 2차원 티타늄 카바이드(MXene)/실리콘 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.262-268
    • /
    • 2024
  • In this study, the MXene/Si composite was prepared by electrostacic assembly with 2-dimensional structured titanium carbide (MXene) and nano silicon for anode material of high-performance lithium-ion battery. Ti3C2Tx MXene was synthesized by etching the Ti3AlC2 MAX with LiF/HCl, and the surface of nano silicon was charged to positively using CTAB (Cetyltrimethylammonium bromide). The MXene/Si anode composite was successfully manufactured by simple mixing process of synthesized MXene and charged silicon. The physical and electrochemical properties of prepared composite were investigated with MXene-silicon composition ratio, and the surface of electrode after cycles was analyzed to evaluate stability of the electrode. The MXene/Si composites demonstrated high initial discharge capacities of 1962.9, 2395.2 and 2504.3 mAh/g as the silicon composition ratio increased to 2, 3 and 4 compared to MXene, respectively. MXene/Si-4, which is MXene and silicon ratio with 1 : 4, exhibited 1387.5 mAh/g of reversible capacity, 74.5% of capacity retention at 100 cycles and high capacity of 700.5 mAh/g at high rate of 4.0 C. As the results, the MXene/Si composite prepared by electrostatic-assenbly could be applied to anode materials for high-performance LIBs.

Influence of Carbon diffusion on the characterization of Si nanocrystals in SiC matrix (Carbon diffusion에 의한 SiC matrix 내의 실리콘 양자점 특성 분석)

  • Moon, Jihyun;Kim, Hyunjong;Cho, Jun Sik;Park, Sang Hyun;Yoon, Kyung Hoon;Song, Jinsoo;O, Byungsung;Lee, Jeong Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.100.1-100.1
    • /
    • 2010
  • 고효율 실리콘 양자점 태양전지를 제작하기 위해 Si과 C target을 co-sputtering 방식으로 제조한 SiC matrix를 열처리하여 박막 내에 Si nanocrystal들을 생성하였다. Si nanocrystal의 특성은 다양한 요인에 영향을 받는 데 barrier 물질인 SiC matrix가 가장 큰 영향을 준다. SiC는 900도 이상에서 열처리하는 동안 Si과 C과 SiC으로 재배열 혹은 재결합하는 데 이 때 가장 작은 carbon이 빠르게 diffusion하는 현상에 의해 Si nanocrystal의 성장과 특성에 영향을 주게 된다. 이 현상을 연구하기 위해 stoichiometric SiC/Si-rich SiC/stoichiometric SiC의 3층 구조로 시료를 제작하여 이를 SIMS의 depth profiling을 통하여 열처리 전보다 열처리 후에 Si-rich SiC layer내에 carbon이 약 2~3%정도 증가한 것으로 carbon이 diffusion된 것을 확인하였다. 이 시료를 UV-VIS-NIR spectroscopy, Raman, GIXRD 등의 다양한 측정을 통하여 carbon diffusion에 의한 Si nanocrystal의 특성변화를 연구하였다.

  • PDF

Fabrication of Si quantum dots superlattice embedded in SiC matrix (SiC 매트릭스를 이용한 실리콘 양자점 초격자 박막 제조)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Chang, Bo-Yun;Ko, Chang-Hyun;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.163-166
    • /
    • 2009
  • 다중접합 초 고효율 태양전지 제조를 위해 SiC 매트릭스를 이용한 실리콘 양자점 초격자 박막을 제조하고 특성을 분석하였다. $SiC/Si_{1-x}C_x$(x ~ 0.31)로 실리콘 양자점 초격자 박막을 Si과 C target을 이용한 co-sputtering법으로 초격자 박막을 제조하고, $1000^{\circ}C$에서 20분간 열처리를 하였다. high resolution transmission electron microscopy 사진으로 약1~7nm 크기인 양자점 생성과 분포 밀도를 확인할 수 있었으며, grazing incident X-ray diffraction (GIXRD)를 통해서 Si(111)과 $\beta$-SiC(111)이 생성되었음을 알 수 있었다. Auger electron spectroscopy (AES)측정에서 stoichiometric SiC층과 Si-rich SiC층의 Si 원자농도 (56%, 69%)와 C 원자 농도 (44%, 31%)를 알 수 있었으며, Fourier transform infra-red spectroscopy (FTIR)측정에서 SiC 픽의 위치가 767에서 $800cm^{-1}$으로 이동하는 것을 알 수 있었다.

  • PDF

Structural, Optical properties of layer thickness dependence for silicon quantum dots in SiC matrix superlattice (실리콘 양자점 초격자 박막의 두께에 따른 구조적, 광학적 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.398-398
    • /
    • 2009
  • 텐덤 구조의 양자점 태양전지에서 양자점의 크기에 따라 에너지 밴드갭이 달라 넓은 대역의 태양광을 이용할 수 있다. 이러한 양자점의 크기는 증착 두께의 제어로 조절이 가능하다. Si과 C target을 이용한 RF Co-sputtering 법으로 각각 증착시간을 다르게 하여, SiC/$Si_{1-x}C_x$(x~0.20)인 실리콘 양자점 초격자 박막을 제조하고, $1000^{\circ}C$에서 20분간 질소 분위기에서 열처리를 하였다. Grazing incident X-ray diffraction(GIXRD)를 통해서 Si(111)과 $\beta$-SiC (111)이 생성되었음을 확인하였고, High resolution transmission electron microscopy(HRTEM) 사진으로 양자점의 크기와 분포 밀도를 확인할 수 있었다. Photoluminescence(PL)에서 1.4, 1.5, 1.7, 1.9eV의 Peak이 확인되었다.

  • PDF