• Title/Summary/Keyword: 실대형실험

Search Result 104, Processing Time 0.019 seconds

Thermal Conductivity Effect of Heat Storage Layer using Porous Feldspar Powder (다공질 장석으로 제조한 축열층의 열전도 특성)

  • Kim, Sung-Wook;Go, Daehong;Choi, Eun-Kyeong;Kim, Sung-Hwan;Kim, Tae-Hyoung;Lee, Kyu-Hwan;Cho, Jinwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.159-170
    • /
    • 2017
  • The temporal and spatial temperature distribution of the heat storage mortar made of porous feldspar was measured and the thermal properties and electricity consumption were analyzed. For the experiment, two real size chambers (control model and test model) with hot water pipes were constructed. Two large scale models with hot water pipes were constructed. The surface temperature change of the heat storage layer was remotely monitored during the heating and cooling process using infrared thermal imaging camera and temperature sensor. The temperature increased from $20^{\circ}C$ to $30^{\circ}C$ under the heating condition. The temperature of the heat storage layer of the test model was $2.0-3.5^{\circ}C$ higher than the control model and the time to reach the target temperature was shortened. As the distance from the hot water pipe increased, the temperature gap increased from $4.0^{\circ}C$ to $4.8^{\circ}C$. The power consumed until the surface temperature of the heat storage layer reached $30^{\circ}C$ was 2.2 times that of the control model. From the heating experiment, the stepwise temperature and electricity consumption were calculated, and the electricity consumption of the heat storage layer of the test model was reduced by 66%. In the cooling experiment, the surface temperature of the heat storage layer of the test model was maintained $2^{\circ}C$ higher than that of the control model. The heat storage effect of the porous feldspar mortar was confirmed by the temperature experiment. With considering that the time to reheat the heat storage layer is extended, the energy efficiency will be increased.

Prestressing Effect of LNG Storage Tank with 2,400 MPa High-Strength Strands (2,400 MPa급 고강도 강연선이 적용된 LNG 저장탱크의 프리스트레싱 효과)

  • Jeon, Se-Jin;Seo, Hae-Keun;Yang, Jun-Mo;Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • High-strength strands have been increasingly applied to recent actual structures in Korea. Structural effect of the increased spacing of sheaths was investigated in this study when the usual 1,860 MPa strands of an LNG storage tank are replaced with 2,400 MPa high-strength strands. First, finite element models of a cylindrical wall of an LNG tank were established and prestressing effect of the circumferential and vertical tendons was considered as equivalent loads. As a result of varying the tendon spacing and prestressing force with the total prestressing effect kept the same, the stress distribution required in design was obtained with the high-strength strands. Also, a full-scale specimen that corresponds to a part of an LNG tank wall was fabricated with 31 high-strength strands with 15.2 mm diameter inserted in each of two sheaths. It was observed that such a high level of prestressing force can be properly transferred to concrete. Moreover, an LNG tank with the world's largest 270,000 kl capacity was modeled and the prestressing effect of high-strength strands was compared with that of normal strands. The watertightness specifications such as residual compressive stress and residual compression zone were also ensured in case of leakage accident. The results of this study can be effectively used when the 2,400 MPa high-strength strands are applied to actual LNG tanks.

A Study on the Adaptability of Oxygen Reduction System to Fire in Cold Storage through Fire Simulation Analysis (화재시뮬레이션 분석을 통한 냉장·냉동 창고 화재의 저산소 시스템 적응성에 관한 연구)

  • Min-Seok Kim;Sang-Bum Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2023
  • Purpose: The number of Cold Storages at home and abroad is on the rise, fires in large Cold Storages have recently occurred. As fires continue to occur and property damage is on the rise every year, the importance of preventing fires in large Cold Storage is growing. Method: Real Cold Storages were investigated on-site and fire cases were analyzed to derive and analyze fire risk, and the ORS, which is emerging as an adaptive fire prevention technology of Cold Storage, was investigated through FDS. Result: oxygen concentration 21, 15.7% and 17.7, 16.7% were analyzed through FDS, and flashover was reached within 3~4 minutes from 21, 17.7, 16.7%, but if oxygen concentration was lowered to 15.7%, it didn't ignite for 13 minutes. Conclusion: This study understood the concept and general part of the ORS, modeled the freezer through FDS, and analyzed the oxygen concentration to analyze the fire protection adaptability of the ORS. In the future, it is expected that large-scale empirical experiments and related regulations will be prepared to provide solutions for fire prevention in Cold Storages in blind spots of fire.

Fabrication Technique and Structural Performance Verification of PSC U-Type Segment Girder Using On-Site Pretension Method (현장 프리텐션 긴장 방식 적용 PSC U형 분절 거더 제작 기술 및 구조 성능 검증)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo;Ki-Tae Park;Hyun-Ock Jang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • Prestressed Concrete (PSC) girders are divided into pre- and post-tension types as prestressing method, and I- and U-type as cross-sectional shape. There are both advantages and disadvantages depending on each prestressing method and cross-sectional shape, and each method is applied to bridge construction sites. In this study, a new girder design was attempted to develop that overcomes its shortcomings by using the pretension method and U-type cross sectional shape. Its structural performance was verified in this study. Pretension type girders are mainly manufactured in factories because they require a reaction arm and related facilities, and have the disadvantage of being limited in weight and span length for road transportation. In addition, in the case of the U-type cross-section, structural stability is very reliable during construction against overturning, but its own weight is relatively large comparing to I-type, and the post-tension method is mainly applied after on-site production. In this study, a PSC girder manufacturing method using the field pretension was proposed and a span length of 40 m real-scale test specimen was manufactured and verified its structural performance.