• 제목/요약/키워드: 실내 라돈

검색결과 104건 처리시간 0.021초

서울지역 건축물의 환경적 특성에 따른 실내 라돈농도 변화 (The Variation Characteristics of Indoor Radon Concentration from Buildings with Different Environment, Seoul)

  • 전재식;이지영;엄석원;채영주
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.692-702
    • /
    • 2011
  • For more effective indoor radon reduction policy and technique, we researched radon data analysis for some buildings in Seoul. Those buildings were categorized as dwelling, underground and office space and the variations of radon concentration and its sources were evaluated. The variations of radon concentrations of indoor space of buildings for a day were patterned specifically by dwelling habits and different environment. As for the new built apartments which were not yet moved in, their indoor radon concentrations were showed more than 3 times after applying interior assembly, and were 5 times higher than ones of rather old residences. As for the subway stations, the radon concentrations during off-run times were about 15% higher than run-times. 10% of radon seemed to be reduced by installation of platform screen doors. As for office space, radon concentrations during working hours were about 2.5 times higher than non-working hours. Plaster board are expected as a main source of radon for them. By radon measurement method for long-term, its data can be over estimated because it covers non-active time in office or public space. Therefore combination of short and long-term measurement method is required for effective and economic reduction. Furthermore importance of ventilation is requested as public information service for all dwelling space. And also standardization for radium content or radiation of radon is necessary.

지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로 (The Research for Relationships between Concentration of Indoor Radon and Distribution of Soil Geological Map using GIS : Based on the Hwacheon and Jangsu Areas)

  • 권명희;이재원;김성미;이정섭;정준식;유주희;이규선;송석환
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.333-351
    • /
    • 2017
  • Objectives: This study examines the relationships between indoor radon concentrations and distribution from soil geological mapping in the Hwacheon and Jangsu areas. Methods: GIS and a pivot table were used for inquiries about indoor radon contents, soil characteristics, and geological differences. Results: The Hwacheon area was characterized by the presence of normal and reverse faults as a passage of runoff for radon, sufficient occurrences of minerals containing uranium within granite as a radon source, a high concentration of radon within the granite area and clear differences of radon concentrations between granitic and metamorphic areas. The Jangsu area was characterized by the presence of normal faults, wide distributions of alluvium, and ambiguities on radon concentrations indoors among areas of geological differences. Considering the granite area and alluvium surrounded with granite areas, the characteristics of radon concentrations within soils and indoors in the Jangsu area are similar to those of the Hwacheon area. High concentrations are found with entisol and inceptisol in the Hawcheon area, but with entisol, inceptisol, and ultisol in the Jangsu area. High radon concentrations are found in sandy loam and/or loam. High concentrations are found in recently constructed or brick buildings, but low concentrations in traditional or prefabricated houses showing a high possibility of outward flow. Conclusions: The overall results suggest that radon concentrations in the Hwacheon and Jangsu area are dominantly influenced by geological characteristics with additional artificial influences.

공동주택에서 취침 시 실내공기환경 평가에 관한 연구 (A Study on the Assessment of the IAQ during Nightime)

  • 김동규;김삼열;김세환
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.93-98
    • /
    • 2007
  • Effort has been performed for latest 20 years to improve resident's comfort and indoor environment in building. And interest and effort to improve indoor air environment among various indoor environment elements have continuously increased since 1990s, because it is examined scientifically that various contaminants generated indoor affect human body. Specially, indoor air contaminants generated from apartments are those exhausted from resident's indoor environment, closing materials and household. Indoor air environment in buildings is different according to pollution degree, existence availability of pollution source, ventilation amount, and meteorology. It is known that other contaminants more than about 900 kinds generate according to a kind of work or action in a room. Specially, nowadays buildings are well insulated and confidentiality-centered for environment protection and economical side. So indoor air contaminants are generated from indoor air pollution sauces of unprepared ventilation, human body carbon dioxide emissions, and various building materials. when these are accumulated in long term human body, it is harmful to resident's health, but awareness for this is very insufficient. Because bedroom is space that people inhabit for a long time by unconscious state and indoor environment occupies important part for resident's health and quality of life at sleep, the actual condition of air quality is investigated, improvement countermeasure is considered, and ventilation amount is analyzed. In this study, putting case that the most longest stayed time is sleeping time when people inhabit in the apartment, the air quality according to volume of bedroom space at sleep was measured and analyzed, and the data acquired will be the basis for improvement on this.

충청북도 일부지역 내 주택 실내 라돈 농도 (A Study on the Concentrations of Indoor Radon for Houses in Chungcheongbuk-do Province, Korea)

  • 지현아;유주희;김가현;원수란;김선홍;이정섭
    • 한국환경보건학회지
    • /
    • 제45권6호
    • /
    • pp.668-674
    • /
    • 2019
  • Objectives: Modern people spend most of their day indoors. As the health impact of radon becomes an issue, public interest also has been growing. The primary route of potential human exposure to radon is inhalation. Long-term exposure to high levels of radon increases the risk of developing lung cancer. Radon exposure is known to be the second-leading cause of lung cancer, following tobacco smoke. This study measures the indoor radon concentrations in detached houses in area A of Chungcheongbuk-do Province considering the construction year, cracks in the houses, the location of installed detectors, and seasonal effects. Methods: The survey was conducted from September 2017 to April 2018 on 1,872 private households located in selected areas in northern Chungcheongbuk-do Province to figure out the year of building construction and the location of detector installed and identify the factors which affect radon concentrations in the air within the building. Radon was measured using a manual alpha track detector (Raduet, Hungary) with a sampling period of longer than 90 days. Results: Indoor radon concentrations in winter within area A was surveyed to be 168.3±193.3 Bq/㎥. There was more than a 2.3 times difference between buildings built before 1979 and those built after 2010. The concentration reached 195.4±221.9 Bq/㎥ for buildings with fractures and 167.2±192.4 Bq/㎥ for buildings without fractures. It was found that detectors installed in household areas with windows exhibited a lower concentration than those installed in concealed spaces. Conclusion: High concentrations of indoor radon were shown when there was a crack in the house. Also, ventilation seems to significantly affect radon concentrations because when the location of the detector in the installed site was near windows compared to an enclosed area, radon concentration variation increased. Therefore, it is considered that radon concentration is lower in summer because natural ventilation occurs more often than in winter.