• Title/Summary/Keyword: 실내 라돈농도

Search Result 66, Processing Time 0.029 seconds

Development of Relative Calibration Method for Measurement of Radon and Application (라돈농도 측정을 위한 고체비적검출기의 상대교정법 개발 및 응용)

  • Park, Young-Woong;Yang, Hyun-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.243-250
    • /
    • 1997
  • A relative-calibration-method of solid-state-track-detector for measurement of radon in air has been developed, and the concentration of radon in each room of a 15th-floor-apartment was measured by using the relative calibrated SSTD. There is a tendency to decrease the concentration of radon when the floor is higher, but the main factor to reduce the concentration of radon in room appeared to be ventilation rate. Average concentration of radon of the 15th-floor-apartment was $1.50{\pm}0.51pCi/l$, and the highest and the lowest concentration of radon were $2.68{\pm}0.32pCi/l$, $0.69{\pm}0.16pCi/l$ respectively.

  • PDF

국내 일부 화강암 및 편마암 지역에서 라돈포텐셜 평가방법에 관한 연구

  • 제현국;전효택
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.85-87
    • /
    • 2003
  • 토양환경에서의 라돈포텐셜이란 토양의 공극에 존재하여 실내환경으로 유입될 수 있는 가능성을 가진 라돈의 농도 개념으로 해당지반을 대표하는 라돈방사능 수준을 의미한다(제현국, 2002). 해당 지반에서 라돈포텐셜을 정량화 할 수 있으면 타 지반과의 상대적인 비교를 통하여 라돈방사능의 수준을 알 수 있으나 토양환경에서 변화양상이 심한 라돈의 특성으로 인해 정확한 라돈포텐셜을 예측한다는 것은 사실상 불가능하다. (중략)

  • PDF

Effective Dose Equivalent due to Inhalation of Indoor Radon-222 Daughters in Korea (한국인의 라돈-222 자핵종 호흡 실효선량당량 평가)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 1991
  • Effective dose equivalents resulting from inhalation of indoor radon-222 daughters at 12 residential areas in Korea were assessed by a simple mathematical lung dosimetry model based on the measurements of long-term averaged radon concentrations at 340 dwellings. The long-term averaged indoor radon-222 concentrations and corresponding eqilibrium equivalent radon $concentration(EEC_{Rn})$ measured by passive time-integrating CR-39 radon cups are in the range of $33.82{\sim}61.42Bq/m^3(median\;:\;48.90Bq/m^3)$ and of $13.53{\sim}24.57Bq/m^3(median\;:\;19.55Bq/m^3)$, respectively. The effective dose equvalent conversion factor for the exposure to unit $EEC_{Rn}$ derived in this study was estimated $1.07{\times}10^{-5}mSv/Bq\;h\;m^{-3}$ for a reference adult and agreed well with those recommended by the ICRP and UNSCEAR. The annual average dose equivalent to the lung $(H_{LUNG})$ from inhalation exposure to measured $EEC_{Rn}$ was estimated to be 20.90 mSv and resulting effective dose $equivalent(H_E)$ was to be 1.25 mSv, which is about 50% of the natural radiation exposure of 2.40 mSv/y to the public reported by the UNSCEAR.

  • PDF

The Determination of Radon Progeny Concentration in Controlled Radon Environment (라돈을 제어하는 환경에서 라돈 자핵종의 농도 결정)

  • Seo, Kyung-Won;Lee, Byung-Kee
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.37-51
    • /
    • 1993
  • A standard radon chamber and a radon generator adjusted by ventilation system which had used in this research were assumed to calculate theoretically the concentration of radon progeny using Jacobi model theory. On the one hand, the filter sampled from the radon standard chamber and the radon generator was measured and analysed by the alpha spectrometry method. It is clear that measured result shows a good agreement with theoretical result. Therefore, it is observed that this research can made a great contribution to more accurate internal dose assessment by alpha emission of radon progeny in indoor radon environment, and fast individual measurement and determination of concentration for radon progeny.

  • PDF

Comparing the Effects of Ventilation and Air Purification Plants on Radon Concentration in the Lower and Upper Floors of a Building (건물 저층과 고층에서 환기와 공기정화 식물을 통한 라돈 농도의 비교)

  • Gong, Yu-jin;Nam, So-Yeong;Shin, Min-Seo;Jang, Hey-Rim;Jeon, Min-Cheol;Yoo, Se-Jong;Kim, Seong-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.881-889
    • /
    • 2020
  • The objective of this study was to quantitatively measure the changes in radon concentration due to ventilation and air purification plants in the lower and upper floors of a building. This study measured and compared radon concentration in the lower and upper floors of the building by using a radon meter when the room was closed, it was ventilated, and air purification plants were installed at a specific time. One-way ANOVA was conducted to evaluate the effect of treatment (i.e., closure, ventilation, and air purification plants) on radon concentration. The results of this study showed that ventilation and air purification plants significantly decreased radon concentration in the lower and upper floors of the building, but the effect of ventilation and that of air purification plants were not significantly different. Therefore, it will be possible to reduce radon concentration effectively when ventilation and air purification plants are used appropriately.

Radon Concentration at N-Kindergarten in G-City (G광역시 N유치원의 라돈 농도)

  • Park, Yun;Kim, Wonjun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.421-424
    • /
    • 2015
  • In this study, To subject the constructed at N-kindergarten in G-city, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at N-kindergarten is low than United States in the radon concentration in air public 4pCi called radon gas baseline maximum allowable concentrations. As a result, radon exposure is not a problem, but when the accumulation radon gas in the lungs, get damaged same lung cancer. Be defensive of kindergarten windows open for ventilation and dust removal be possible to reduce the exposure.

Ambient Air Radon Concentrations of Characteristic in Korea (국내 대기중 라돈농도의 특성)

  • ;;;;;T. lida;K. Yoshioka
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.50-51
    • /
    • 1999
  • 라돈($^{222}R$)은 암석이나 토양 같은 지각물질에서 발생되는 3.82일의 반감기를 가진 자연 방사선물질로 1980년대 중반부터 미국을 비롯한 유럽의 선진국에서 환경적인 측면에서 라돈의 관심이 증대되었다. 한편, 국내에서의 라돈에 관한 연구는 실내공기질 분야에서 진행되고 있으나 대기환경적 측면에서의 종합적이고 체계적인 연구가 활발히 이루어지지 않고 있는 실정이다.(중략)

  • PDF

A Study on Distribution of Particulate and Radon Concentrations in Indoor Environment in Seoul City (서울시 일부 실내환경 중 미세먼지와 라돈농도 분포에 관한 연구)

  • 김윤신;김현탁;이철민;장기석;안진호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.365-366
    • /
    • 2000
  • 라돈은 암석이나 토양 같은 지각물질에서 발생되는 우라늄($^{238}$ U) 붕괴계열인 라듐($^{226}$ Ra)의 붕괴과정에서 생성된다. 라돈($^{222}$ Rn)은 붕괴하면서 $\alpha$방사선을 방출한다. $\alpha$ 붕괴에 의하여 $^{218}$ Po, $^{214}$ Po, $^{214}$ Bi 등의 자핵종(Radon daughter)을 생성하며, 이 과정에서 인체의 세포를 죽이거나 염색체를 손상시킬 수 있으며, 폐암의 발생 위험률을 높이는 것으로 보고되었다$^{1)}$ . 라돈은 건물의 균열, 연결부위, 혹은 배수관이나 오수간, 주변의 틈을 통해서 실내로 유입된다. (중략)

  • PDF