• Title/Summary/Keyword: 실내모형시험

Search Result 204, Processing Time 0.026 seconds

A study on soil behaviour due to tunnelling under embedded pile using close range photogrammetry (근거리 사진계측을 이용한 매입말뚝 하부 터널 굴착 시 주변 지반의 거동 연구)

  • Kong, Suk-Min;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.4
    • /
    • pp.365-376
    • /
    • 2016
  • Population of urban areas is rapidly increased due to urbanization. This situation leads to lack of surface space. So, underground space has been developed for resolving the problem of congested urban areas. Many studies have researched for this situation. However, previous studies mainly focused on behaviour of structures. Researches about behaviour of soil are lacked. For this reason, this study has investigated interactive behaviour between embedded pile and its surrounding ground due to tunnelling. Soil deformation is observed by the close range photogrammetric method and image processing in the model test. These data are compared with numerical analysis.

A Study for Influence Range of Ground Surface due to Sewer Fracture in Various Relative Density of Sand by Laboratory Model Test (실내모형시험을 통한 상대밀도가 다양한 사질토 지반에서의 하수도관 파손에 따른 지표침하의 영향범위에 관한 연구)

  • Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.19-30
    • /
    • 2016
  • It is well known that water leakage from decrepit sewer pipe mainly causes frequent occurrence of ground subsidence in urban area. Thus, laboratory model tests were carried out to investigate ground behaviour according to location of sewer fracture and various relative densities of surrounding soil. The portion of fractured pipe was assumed to be 20% compared to the circumference of pipe, and to be positioned at the top and bottom of the pipe. Ground conditions were made as loose sand ($D_r=30%$) and dense sand ($D_r=70%$). In addition, comparison and analysis with results of model tests were carried out by Finite Element analysis. As a result, not only water leakage from the bottom of pipe (scenario 2) caused greater ground behaviour than leakage from the top of pipe (scenario 1), but also much greater surface settlement occurred when the ground condition is loose.

Behavior of Dry-stone Segmental Retaining Wall Using Physical Modeling and Numerical Simulation (모형시험과 수치해석을 이용한 조적식 석축옹벽의 거동 특성)

  • Kim, Seong-Su;Mok, Young-Jin;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.25-36
    • /
    • 2011
  • The behavior of the dry-stone masonry retaining structure has been investigated via physical model test and numerical simulation. In the model test, the digital image analysis using PIV technique was employed to measure horizontal displacements in the backfill soils and retaining blocks. For finite element numerical analyses, the commercial code, ABAQUS, was used. The horizontal displacements observed in the model test showed that the development of the failure surface is progressive. Numerical results showed that in most cases horizontal earth pressure is distributed similarly to a conventional Rankine’s distribution. However, lower values of the internal friction angle of the backfill soils and interface friction angle in the front blocks produce irregularly nonlinear distribution of the horizontal earth pressure.

Pile Load Transition and Ground Behaviour due to Development of Tunnel Volume Loss under Grouped pile in Sand (사질토 지반에서 터널체적손실 증가에 따른 군말뚝의 하중변이와 지반거동)

  • Oh, Dong Wook;Lee, Yong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • A development of underground space is very useful solution to slove problem occurred from ground surface enlargement in urban areas due to the growth of population, tunnelling is the most popular way and widely used. Researches regarding tunneling-induced pile-soil interactive behaviour have been conducted by many researchers. A study on pile axial force distribution due to tunnelling through laboratory model test, however, is being rarely carried out. In this study, therefore, authors investigate ground behaviour due to tunnelling below grouped pile subjected vertical load as well as pile axial force distribution. A concept of volume loss is used to express tunnel excavation, which is normally applied to 1~2% for tunnelling in soft ground. In this study, however, 10% of that applied to investigate failure mechanism. As a result of laboratory model test, a decrease of pile axial force occurs at 1.5% of volume loss, settlement of grouped pile is 1.2~4.7 times greater than the adjacent ground surface one. Ground deformations at 1.5% of volume loss are measured using Close Range Photogrammetry and compared with results from numerical analysis.

Development of Fatigue Model for Asphalt Black Base by Accelerated Pavement Testing (포장가속시험을 이용한 아스팔트 안정처리층의 피로모형 개발)

  • Yeo, In-Soo;Suh, Young-Chan;Mun, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2007
  • This thesis develops a fatigue model for the asphalt black base using the APT(Accelerated Pavement Testing) and analyzes the correlation of the APT analysis result with results of previous laboratory tests. For the APT testing, aggregate of the maximum grain size of 25mm(BB-3) was used as the material for the asphalt black base. The result of the APT revealed that the variable of the fatigue model, i.e. the maximum tensile stress on the bottom part of the pavement, increased as the number of loading increased while the modulus of elasticity for the pavement layer decreased gradually. The tensile strain was obtained from a strain gauge, and it was used to derive the values of $k_1=1.29{\times}10^{-6}$ and $k_2=3.02$ from the basic equation of the asphalt fatigue model, $N_f=k_1(\frac{1}{\epsilon})^{k_2}$. The fatigue life predicted from the asphalt fatigue model was greater than that obtained from laboratory experiments, given the same tensile strain. Additionally, a theory to estimate the remaining life of the pavement was developed using FWD, a non-destructive experiment.

  • PDF

A Study on the Reinforcing Effect Analysis of Aging Reservoir Reinforced with Surface Stabilizer (표층안정재로 보강된 노후 저수지의 보강효과 분석에 관한 연구)

  • Park, Seonghun;Seo, Segwan;Cho, Daesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.5-14
    • /
    • 2020
  • This study analyzed the reinforcement effect by conducting laboratory test, model test and program analysis to utilize the surface stabilizer used for the restoration work of collapsed slopes as a reinforcing material for aging reservoirs that exhibits a curing reaction similar to cement. Based on the results of the laboratory test, a model test and program analysis were performed by applying 9% of the mixing ratio. As a result, when the surface stabilizer was used in aging reservoir, it was found that the flow of water only occurred on part of the slope and underground in reservoir. And the water flow could be reduced inside the reservoir. In addition, it was analyzed that the seepage discharge could be reduced by about 42% and the saturated area within the reservoir by about 73%, thereby securing the stability of the aged reservoir.

A Comparative Study of Skin Frictional Force through a Laboratory Model Test of Pile Filling Materials with Utilizing Circulating Resources (순환자원 활용 말뚝채움재의 실내모형시험을 통한 주면마찰력 비교 연구)

  • Song, Sang-Hwon;Jeong, Young-Soon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Rural multi-purpose buildings needs to ensure their safety against various disasters. Therefore, a pile foundation, which is a foundation type that can transmit the load of the structure to the bedrock layer, has been designed. The pile foundation method is largely divided into driving piles method and pre-bored pile method. Recently, in order to respond to the Noise and Vibration Control Act and related environmental complaints, construction of pile foundation adopts pre-bored pile method. The bearing capacity of the pre-bored pile method is calculated through a load test in situ. However, a disadvantage stems in that it is difficult to measure the ultimate bearing capacity due to field conditions. Therefore, in this study, the skin frictional force of pre-bored pile was measured through a model test in laboratory for each pile filling material. In result, the pile filling material with using circulating resources shows superior skin frictional force than ordinary portland cement. This study also judged that the result can be applied in place of ordinary Portland cement in the field.

Reinforcing Efficiency of Micro-Pile with Precast Retaining Wall (프리캐스트 옹벽 마이크로 파일의 보강 효율)

  • Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.61-71
    • /
    • 2008
  • This study investigates the lateral resistance of micro-pile system when surcharge load is acting on the back of retaining wall. Both laboratory experiments and numerical analysis were performed. The experimental retaining wall model was developed on the laboratory-sized foundation. While surcharge load was acting, the interval and length varied as experimental variables. From the investigation it is known that the micro-pile system can effectively control the lateral displacement which is developed on the precast retaining wall. The effectiveness became increased as the pile interval reduced and the length of pile increased. The greatest reinforcing efficiency was shown when the pile length was 0.5H and the interval was 7D.

  • PDF

Investigation of ground behaviour between plane-strain grouped pile and 2-arch tunnel station excavation (2-arch 터널 정거장 굴착 시 평면변형률 조건에서 군말뚝의 이격거리에 따른 지반거동 분석)

  • Kong, Suk-Min;Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Hyun-Gu;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.535-544
    • /
    • 2016
  • Special tunnel design and construction methods have been suggested due to developments of subway and tunnel. Collapse accidents of tunnel bring enormous damage. So, observation and analysis for the safety of tunnelling and behaviour of surrounding ground are important. But, it is not economical to implement the field test in every time. Therefore, this study has measured ground behaviour due to excavation of 2-arch tunnel station according to offset between grouped pile and tunnel by laboratory model test. For the model test, trapdoor device was adopted. Tunnelling is simulated by volume loss of 2-arch tunnel. Ground displacements are observed by close range photogrammetric method and image processing. In addition, these data are compared with numerical analysis.