• Title/Summary/Keyword: 실내공간환경

Search Result 724, Processing Time 0.028 seconds

A Study on Perception Change in Bicycle users' Outdoor Activity by Particulate Matter: Based on the Social Network Analysis (미세먼지로 인한 자전거 이용객의 야외활동 인식변화에 관한 연구: 사회네트워크분석을 중심으로)

  • Kim, Bomi;Lee, Dong Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.440-456
    • /
    • 2019
  • The controversy of the risk perception related to particulate matters becomes significant. Therefore, in order to understand the nature of the particulate matters, we gathered articles and comments in on-line community related to bicycling which is affected by exposure of the particulate matters. As a result, firstly, the government - led particulate matter policy was strengthened and segmented every period, butthe risk perception related to particulate matters in the bicycle community has become active and serious. Second, as a result of analyzing the perception change of outdoor activities related to particulate matters, bicycle users in community showed a tendency of outdoor activity depending on the degree of particulate matters ratherthan the weather. In addition, the level of the risk perception related to particulate matters has been moved from fears of serious threat in daily life and health, combined with the disregard of domestic particulate matter levels or mask performance. Ultimately, these risk perception related to particulate matters have led some of the bicycling that were mainly enjoyed outdoors to the indoor space. However, in comparison with outdoor bicycling enjoyed by various factors such as scenery, people, and weather, the monotonous indoor bicycling was converted into another type of indoor exercise such as fitness and yoga. In summary, it was derived from mistrust of excessive information or policy provided by the government or local governments. It is considered that environmental policy should be implemented after discussion of risk communication that can reduce the gap between public anxiety and concern so as to cope with the risk perception related to particulate matters. Therefore,this study should be provided as an academic basis for the effective communication direction when decision makers establish the policy related to particulate matters.

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

A Study On RTLS(Real Time Location System) Based on RSS(Received Signal Strength) and RSS Characteristics Analysis with the External Factors (외적요인에 따른 RSS 특성 분석과 이를 이용한 실시간 위치 추적 시스템 구현에 관한 연구)

  • Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we analysed RSS characteristics by external factors and presented an efficient algorithm for real-time location tracking and its hardware system. The proposed algorithm enhanced the ranging accuracy using Kalman Filter based on the RSS DB. The location tracking system that consists of the tag, AP(Access Point), a data collector(Data Receiver) with IEEE 802.15.4(ZigBee) network environment, and location tracking application that reveal locations of each tag is implemented for the test environment. The location tracking system presented in this paper is implemented with MSP430 microprocessor manufactured by TI(Texas Instrument), CC2420 RF chipset and the location tracking application. With the results of the experiment, the proposed algorithm and the system can achieve the efficiency and the accuracy of location tracking with the average error of 19.12cm, and its standard deviation of 5.31cm in outdoor circumstance. Also, the experimental result shows that exact tracking of position in indoor circumstance cannot achieve because of vulnerable RSS with external circumstance.

A Study on Traveling Characteristics and Evaluation about Noise of Hydraulic Turbine Dynamo in Dam (댐 수차 발전기 소음의 전달특성과 평가에 관한 연구)

  • Yun, Jae-Hyun;Kook, Jung-Hoon;Kim, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.705-711
    • /
    • 2008
  • In case of the domestic condition, as the initiating from Sumjin River Dam, total 14 units of multipurpose dams had been constructed in 1965 for the roles of flood control, waterpower generation, irrigation, water supply, industrial water supply. In the case of such multipurpose dam, it produces electric energy by converting the potential energy utilizing its head and quantity of the water into kinetic energy. However, in this process, since during the time when the turbine connected to the hydraulic turbine dynamo revolves and there occurs a loud noise, it brings the physical, mental bad influences to those people also a decline of an effective working efficiency. On such point of view, after selection of various 16 measurement points, this study has measured and analyzed the travelling characteristics of noise generated at the hydraulic turbine dynamo in Daechung Dam, and also has evaluated the degree of indoor noise using the evaluation index such as PSIL, NC. As the result of noise-evaluation, in case of Daechung Dam, since the noise damage grade appears very seriously at various spaces, it is considering that its soundproof measure would be necessitated keenly. Also, it is considered that such data could be utilized as the valuable material hereafter for establishment of an efficient noise-reduction countermeasure and a comfortable working environment for the hydraulic turbine dynamo plant.

Korea's Design Prototypetyle (한국 디자인 원형 연구)

  • Kim, Bok-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.175-181
    • /
    • 2007
  • Design prototype is described from the stately aspect as a principle of formative art, and from the shapeable aspect of physical feature. The prototype can be a common denominator which is contained in one nation's culture, art and life, as the thing which corresponds to the daily industrial craft, architecture and art's production intention and activity with the thought and background of the culture. We have formed the design prototypes with time and space in the process which absorbs and integrates the new culture. Modern Korean design's prototype can be seen in the late Chosun. As the upper culture and sub-culture were combined, the active culture was developed. Nobody can deny that Chosun's culture and art becomes a basis of today's design and Korea's beauty. In creating the design prototype, the natural environmental factors such as topography and climate are the most important. Such natural environmental factor led the design recognition of art and craft art, as well as an architecture and indoor environment's form. Korea design produced the artisan sprite which is devoted to a moral duty and instinct as our nation's nature and emotion, and ensured the emotional process not the rational process. So, it created naturalism which accepted the material and shape. Our design prototype's path tracking as an energy of future society's new design identity, can be the important theme for our design development.

Mechanical and Germination Characteristics of Stabilized Dredged Soil (고화준설토의 역학적 특성과 식생 발아 특성)

  • Lee, Miji;Mun, Kyoungju;Yoon, Gillim;Eum, Hyunmi;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this paper, mechanical and germination characteristics of stabilized dredged soils were investigated to recycle dredged soil in eco-friendly manner such as waterfront construction. Non sintering binder (NSB), which was developed by using interchemical reactions between slag, high-calcium fly ash, alkali activator on the dredged marine clay, was added to dredged soil. Ordinary portland cement was also used for the comparison of two binders. Experimental tests such as flow test and unconfined compressive test were carried out to evaluate characteristics of stabilized dredged soil. Leaching test, pH measure, vegetation germination test were also conducted to consider environmental applicability. The unconfined compressive tests shows that unconfined compressive strength (UCS) also increases with the increase of curing time and mixed ratio. UCS of NSB mixtures were higher than those of OPC mixtures. Germination tests showed that germination and sprouting date are better in NSB mixture than OPC mixture. It can be explained that germination decreased as pH and 7-day strength increased.

Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region (달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험)

  • Park, Jae-Min;Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.741-749
    • /
    • 2022
  • Major space agencies are planning for the rover-based lunar exploration since water-ice was detected in permanently shadowed regions (PSR). Although sunlight does not directly reach the PSRs, it is expected that reflected sunlight sustains a certain level of low-light environment. In this research, the indoor testbed was made to simulate the PSR's lighting and topological conditions, to which low light enhancement methods (CLAHE, Dehaze, RetinexNet, GLADNet) were applied to restore image brightness and color as well as to investigate their influences on the performance of feature extraction and matching methods (SIFT, SURF, ORB, AKAZE). The experiment results show that GLADNet and Dehaze images in order significantly improve image brightness and color. However, the performance of the feature extraction and matching methods were improved by Dehaze and GLADNet images in order, especially for ORB and AKAZE. Thus, in the lunar exploration, Dehaze is appropriate for building 3D topographic map whereas GLADNet is adequate for geological investigation.

Evaluation of the Amount of Gas Generated through Combustion of Wood Charcoal and Agglomerated Charcoal Depending on Air Ventilation (숯과 성형숯의 연소를 통해 배출되는 가스 발생량 및 실내공간 환기량 평가)

  • JU, Young Min;JEONG, Hanseob;CHEA, Kwang-Seok;AHN, Byung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.847-860
    • /
    • 2020
  • This study was conducted into combustion characteristics and gases generated by the combustion of charcoal and agglomerated charcoal distributed in the domestic using a combustion chamber based on the average space per crater of a charcoal-grilled restaurant in South Korea. Each of the three types of charcoals and agglomerated wood charcoals was analyzed for fuel and combustion characteristics. In addition, the concentration changes of CO, CO2, NOx, and O2 were measured for 20 minutes depending on ventilation. As a result, CO yield without ventilation was measured in the range of 1390 to 4703 ppm, and CO yield with ventilation decreases about 29.8% to 57.4%. CO2 yield without ventilation was measured in the range of 1.34% to 2.42%, and CO2 yield was about 44.1% to 53.6% when the emission was more than about 1.5% at 10 minutes. The NOx yield was divided into two cases where the NOx yield was continuously increased because of incomplete combustion, emitted ranging from 29 ppm to 47 ppm, and where emission was constant after 1 minute in the range of 9 ppm to 18 ppm. The NOx yield with ventilation tends to be similar to the without ventilation, and NOx yield decreases up to 62.5%. Therefore, it could be used for health risk assessment with the simulation of the usage environment of charcoal and agglomerated wood charcoal.

Building Energy Savings due to Incorporated Daylight-Glazing Systems (통합 채광시스템의 건물 냉난방 에너지 성능평가)

  • Kim, Jeong-Tai;Ahn, Hyun-Tae;Kim, Gon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The quantity of light available for a space can be translated in term of the amount of energy savings through a process of a building energy simulation. To get significant energy savings in general illumination, the electric lighting system must be incorporated with a daylight - activated dimmer control. A prototype configuration of an once interior has been established and the integration between the building envelope and lighting and HVAC systems is evaluated based on computer modeling of a lighting control facility. First of all, an energy-efficient luminaire system is designed and the lighting analysis program, Lumen-Micro 2000 predicts the optimal layout of a conventional fluorescent lighting future to meet the designed lighting level and calculates unit power density, which translates the demanded met of electric lighting energy. A dimming control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. Annual cooling load due to lighting and the projecting saving amount of cooling load due to daylighting under overcast diffuse sky m evaluated by computer software ENER-Win. In brief, the results from building energy simulation with measured daylight illumination levels and the performance of lighting control system indicate that daylighting can save over 70 percent of the required energy for general illumination in the perimeter zones through the year A 25[%] of electric energy for cooling and almost all off heating energy may be saved by dimming and turning off the luminaires in the perimeter zones.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.