• Title/Summary/Keyword: 신.재생에너지

Search Result 4,686, Processing Time 0.033 seconds

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

A Study on the Automation of MVDC System-Linked Digital Substation (MVDC 시스템연계 디지털변전소 자동화 연구)

  • Jang, Soon Ho;Koo, Ja Ik;Mun, Cho Rong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.199-204
    • /
    • 2021
  • Digital substation refers to a substation that digitizes functions and communication methods of power facilities such as monitoring, measuring, control, protection, and operation based on IEC 61850, an international standard for the purpose of intelligent power grids. Based on the intelligent operating system, efficient monitoring and control of power facilities is possible, and automatic recovery function and remote control are possible in the event of an accident, enabling rapid power failure recovery. With the development of digital technology and the expansion of the introduction of eco-friendly renewable energy and electric vehicles, the spread of direct current distribution systems is expected to expand. MVDC is a system that utilizes direct current lines with voltage levels and transmission capacities between HVDCs applied to conventional transmission systems and LVDCs from consumers. Converting existing lines in substations, where most power equipment is alternating current centric, to direct current lines will reduce transmission losses and ensure greater current capacity. The process bus of a digital substation is a communication network consisting of communication equipment such as Ethernet switches that connect installed devices between bay level and process level. For MVDC linkage to existing digital substations, the process level was divided into two buses: AC and DC, and a system that can be comprehensively managed in conjunction with diagnostic IEDs as well as surveillance and control was proposed.

Collaboration for Carbon Market of Three Countries: KOREA, JAPAN and CHINA (한·중·일 탄소시장 협력 방안)

  • HWANG, YUN SEOP;Choi, Young Jun;Lee, Yoon
    • International Area Studies Review
    • /
    • v.15 no.2
    • /
    • pp.427-447
    • /
    • 2011
  • In global, there is an active movement to reduce the green house gas. Allowance and carbon tax are the one of effective alternatives to mitigate green gas effect. In addition, the clean development machinism(CDM) can be applied between the ANNEX 1 and developing countries. It could be an one good solution to reduce the GHG. In the Northern Asia, the CDM can be the one of the possible solution to reduce the GHG because the Japan has a responsibility to reduce GHG and the China and Korea have a room to supply CDM credit. It is suffice to say that if these three countries decide to collaborate, the new international carbon market can be established that can be the similar form of EU-ETS. It is clear that few barriers must be removed to launched such new form of carbon market. Protection of domestic technology, excessive financial request of business opportunities by CDM, and irrational needs of carbon credit that created by CDM, listed constraints define as an one single word, the national selfishness. Once it is cleared, there is high possibility that the Northern Asia CDM trading system can be launched.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

A Study on the Spontaneous Ignition Characteristics of Wood Pellets related to Change in Flow Rate (공기유량의 변화에 대한 우드펠릿의 자연발화 특성에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.590-596
    • /
    • 2019
  • Uses of fossil fuels like coal and oil increases with industrial development, and problems like abnormal climate come up as greenhouse gas increases. Accordingly, studies are actively conducted on eco-friendly renewable energy as a replacement for the main resources, and especially, wood pellets with high thermal efficiency are in the limelight as an alternative fuel in thermal power stations and gas boilers. However, despite a constant increase in their usage, few studies are conducted on their risks like fire and spontaneous combustion. Thus, this study found the auto-ignition temperature and critical ignition temperature of wood pellets with a change in flow rate in a thermostatic bath, using a sample vessel with 20 cm in length, 20 cm in height and 14 cm in thickness to predict their ignition characteristics. Consequently, at the flow rate of 0 NL/min, as the core temperature of the sample increased to higher than the ambient temperature, they ignited at $153^{\circ}C$, when the critical ignition temperature was $152.5^{\circ}C$. At the flow rates of 0.5 NL/min and 1.0 NL/min, it was $149.5^{\circ}C$, and at the flow rate of 1.5 NL/min, it was $147.5^{\circ}C$. Consequently, at the same storage, the more the flow rate, the lower the critical ignition temperature became.

Quality Improvement of Pyrolysis Oil Fraction of Waste Plastic by Dimethylformamide Extraction (디메틸포름아마이드 추출에 의한 폐플라스틱 열분해유 유분의 품질향상)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.155-159
    • /
    • 2019
  • As a part of improving the quality for the fraction of the waste plastics pyrolysis oil (WPPO), the recovery of paraffin components contained in the fraction was investigated by dimethylformamide (DMF) equilibrium extraction. The fraction of a distilling temperature of $120{\sim}350^{\circ}C$ recovered from WPPO by the simple distillation and the aqueous solution of DMF were used as a raw material and solvent, respectively. The concentrations of paraffin components ($C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$) contained in the raffinate decreased by increasing the mass fraction of water in the solvent at an initial state ($y_{w,0}$), whereas, the concentrations of paraffin components contained in the raffinate increased by increasing the mass ratio of the solvent to the feed at an initial state $(S/F)_0$. The concentrations of $C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$ paraffin components present in the raffinate recovered at $(S/F)_0=10$ were about 1.37, 2.0, 2.46 and 3.16 times higher than those of the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly increased with increasing $y_{w,0}$, and decreasing $(S/F)_0$. The raffinate recovered through this study was expected to be used as a renewable energy.

Importance-Performance Analysis of the Livestock Organic Wastes Recycling Policy (축산 유기성 폐기물 자원화 정책의 중요도-만족도 분석)

  • Kim, Won-Tae;Suh, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.523-531
    • /
    • 2018
  • The purpose of this paper is to derive priorities and implications for the organic resource conservation policy in the livestock sector. We conducted a survey on the importance-performance of the organic waste resource reclamation of livestock sector using a 5-point Likert scale. The importance average for the resource recycling of livestock organic waste was 3.63 and the average of performance was 3.04. As a result of the IPA on livestock manure recycling measures, it is necessary to improve feed quality, establish a local recycling system, increase demand for compost and liquid, enhance customer linkages, and develop cost reduction technologies. It requires intensive support for promoting the spread of odor reduction technologies and integrated management of biomass. It is necessary to introduce mid- and long-term measures such as the revival of feed in tariff, promote by-product feeding, establish solid fuel process management standards, create hygiene safety standards, develop eco-beads and promotion of feed conversion. It is required to strengthen support for the development of odor reduction technologies and prepare consultative organizations among related departments, develop eco-friendly solid fuel technology, and support policies for renewable energy certification.

Scenario-based Vulnerability Assessment of Hydroelectric Power Plant (시나리오 기반 수력플랜트 설비의 취약성 평가)

  • Nam, Myeong Jun;Lee, Jae Young;Jung, Woo Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.9-21
    • /
    • 2021
  • Recently, the importance of eco-friendly power generation facility using renewable energy has newly appeared. Hydropower plant is a very important source of electricity generation and supply which is very important to secure safety because it is commonly connected with multi facility and operated on a large scale. In this study, a scenario-based analysis method was suggested to assess vulnerability of a penstock system caused by water hammer commonly occurred in the operation of hydropower plants. A hypothetical hydropower plant was used to demonstrate the applicability of a transient analysis model. In order to verify reliability of the model, the prediction of pressure behaviors were compared with the results of commercial model (SIMSEN) and measured data, then a real hydroelectric power plant was applied to develop all potential water hammer scenarios during the actual operation. The scenario-based simulation and vulnerability assessment for water hammer in the penstock system were performed with internal and external load conditions. The simulation results indicated that the vulnerability of a penstock system was varied with the operating conditions of hydropower facilities and significantly affected by load combination consisting of different load scenarios. The proposed numerical method could be an useful tool for the vulnerabilityty assessment of the hydropower plants due to water hammer.

Electromagnetic Interference of GMDSS MF/HF Band by Offshore Wind Farm (해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Recently, the share of wind power in energy markets has sharply increased with the active development of renewable energy internationally. In particular, large-scale wind farms are being developed far from the coast to make use of abundant wind resources and to reduce noise pollution. In addition to the electromagnetic interference (EMI) caused by offshore wind farms to coastal or air surveillance radars, it is necessary to investigate the EMI on global maritime distress and safety system (GMDSS) communications between ship and coastal stations. For this purpose, this study investigates whether the transmitted field of MF/HF band from a ship would be subject to interference or attenuation below the threshold at a coastal receiver. First, using geographic information system digital maps and 3D CAD models of wind turbines, the area of interest is electromagnetically modeled with patch models. Although high frequency analysis methods like Physical Optics are appropriate to analyze wide areas compared to its wavelength, the high frequency analysis method is first verified with an accurate low frequency analysis method by simplifying the surrounding area and turbines. As a result, the received wave power is almost the same regardless of whether the wind farms are located between ships and coastal stations. From this result, although wind turbines are large structures, the size is only a few wavelengths, so it does not interfere with the electric field of MF/HF distress communications.