• 제목/요약/키워드: 신호 인식

검색결과 1,796건 처리시간 0.024초

뇌전도 신호를 이용한 실시간 감정변화 인식 기법 (Real-Time Emotional Change Recognition Technique using EEG signal)

  • 최동윤;이상혁;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.131-133
    • /
    • 2019
  • 감정인식 기술은 인간과 인공지능이 감정적인 상호작용을 위하여 매우 중요한 기술이다. 얼굴영상 기반의 감정인식 연구는 가장 널리 진행되어 왔으나 우리는 표정에서 드러나지 않는 내면의 감정을 인식하기 위하여 뇌전도를 이용한 감정인식 기법을 제안한다. 먼저 2 초 구간의 뇌전도 신호에 대하여 time, frequency, time-frequency 영역에서 특징점을 추출하고 이를 3 개의 fully connected layer 로 구성되어 있는 regressor 를 이용하여 valence 정보를 추정한다. MAHNOB-HCI 데이터세트에 대한 실험결과에서 제안기법은 종래기법보다 낮은 오차를 보이며 감정의 변화를 실시간으로 인식하는 결과를 보인다.

  • PDF

802.11 무선 신호 학습 기법을 이용한 실내 위치 인식 시스템의 구현 (Implementation of Indoor Location Aware System using 802.11 Wireless Signal Learning Algorithm)

  • 박세진;김민구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.361-365
    • /
    • 2007
  • 위치정보는 유비쿼터스 컴퓨팅의 가장 중요한 항목 중 하나이다. 일반적인 위치 인식 시스템은 GPS가 대표적이지만, 실내에서 사용할 수 없고 건물내부와 같은 좁은 지역에서의 위치 인식이 어렵다는 단점이 있다. 특히 핸드폰, PDA와 같은 개인용 장비 에서는 더욱 정교한 위치 인식 기술이 필요한데, 무선랜을 기반으로 하는 위치 인식 기술은 그러한 목적을 달성하기에 적절하다. AP (Access Point)로부터 수집된 무선 신호의 세기는 모바일 기기의 위치를 측정하는데 필요한 지도로써 사용할 수 있지만, 건물의 벽, 사물, 사람 등과 같은 장애물의 간섭으로 변화가 심해 쉽게 사용할 수 없다. 본 논문에서는 이러한 문제점을 극복하기 위하여 신경망 모델을 이용한 무선랜 환경에서의 위치 인식 시스템을 제안한다. 아울러 신경망 학습에 사용될 학습데이터의 오차를 보정하고, 중복을 제거하기 위하여 칼만 필터를 사용하였다.

  • PDF

인공신경망을 이용한 실시간 영문인쇄체 인식 (The Real-time Printed Alphabets Recognition using Artificial Neural Networks)

  • 심성균;정원용
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.149-152
    • /
    • 2001
  • 본 논문은 이미 판서된 오프라인(off-line) 영문 인쇄체를 실시간으로 인식하기 위해 인공신경망의 역전파 (Backpropagation) 학습알고리즘을 적용하여 인식 시스템의 성능을 최대화하고, 양질의 특성벡터를 추출함으로서 실시간 처리가 가능하도록 처리시간을 단축시키는 것을 목적으로 하였다. 실시간 영상을 획득하고 처리하기 위한 Genesis 실시간 영상처리 보드와 이 보드를 제어하기 위한 MIL(Matrox Image Library)패키지를 이용하여 실시간 인식시스템을 구현하였고, 인공신경망의 기대값을 ASCII형태로 변환시켜 출력벡터의 차수를 감소시키는 방법을 제시함으로서 패턴의 학습과 인식처리에 소요되는 시간, 그리고 인식시스템의 성능을 비교해 보았다.

  • PDF

PIR 센서와 딥러닝을 활용한 이동 방향 인식 (Detection of Moving Direction using PIR Senosrs and Deep Learning Algorithms)

  • 우지영;윤재석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.515-516
    • /
    • 2018
  • 본 논문에서는 수동 적외선 (PIR: passive infrared) 센서를 탑재한 센싱 시스템과 딥러닝 알고리즘을 활용하여 실내 환경에서 사용자의 이동 방향을 인식하기 위한 방법을 제안한다. PIR 센싱 소자는 사람의 이동 방향에 따라 구별이 가능한 신호를 발생시키는데, 4개의 PIR 센서를 $45^{\circ}$씩 증가하도록 배치한 센싱 시스템을 개발하여 실내 천장에 설치한 뒤 6명의 사용자로부터 인식 범위 내에서 움직이는 동안 PIR 센서 신호를 수집하였다. 수집한 원시 데이터와 특징 데이터를 추출하여 딥러닝 알고리즘을 적용한 인식률을 실험하였으며, 제안한 센싱 시스템과 딥러닝 알고리즘이 사용자의 움직임을 99.2%%로 인식할 수 있음을 보였다. 또한 한 개의 센서만을 이용하였을때에도 98.4%의 정확도로 사용자의 움직임 방향을 탐지하였다.

  • PDF

Substroke HMM 기반 온라인 필기체 문자인식 (On-line Handwriting Recognition Based on Substroke HMM)

  • 김춘영;석수영;정호열;정현열
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.74-77
    • /
    • 2003
  • 본 논문에서는 자연스러운 온라인 필기체 문자 인식을 위하여 획 기반 HMM(Substroke HMM)을 기반으로 한 인식 방법을 채택하고, 획 분류의 정확도 향상을 위한 전처리 과정에 대해 재샘플링 간격 조정을 통한 획 분류실험을 통해 인식률 제고에 관한 실험을 수행하였다 필기체 문자인식을 위한 방법으로 한 문자 전체를 HMM으로 구성하는 Whole-character HMM과 자소단위를 HMM으로 구성하는 character HMM을 주로 이용하였으나, 이러한 방법은 문자의 수에 비례하여 비교적 큰 메모리 용량과 계산량이 요구되는 단점이 있다. 이러한 단점을 개선하기 위한 획 기반 HMM은 문자를 획 단위로 분류한 후 이를 HMM 모델로 구성하므로 소수의 획 기반 HMM 모델만으로 문자를 모두 표현할 수 있는 장점을 가지고 있어, 인식률의 큰 저하 없이 계산량 및 메모리 용량을 크게 줄일 수 있다. PDA상에서 수집한 완성형 한글 데이터베이스를 사용하여 획 분류 실험을 수행한 결과 평활화와 7/100 길이의 재샘플링을 수행한 경우 평활화 과정을 추가하지 않은 기존의 재샘플링 5/100 길이의 경우에 비해 정확도가 평균 3.7% 향상을 나타내었으며, 특히 첨가 에러율이 감소함을 확인할 수 있다.

  • PDF

dSPACE 보드를 이용한 음성인식 명령처리시스템 실시간 구현에 관한 연구 (A study on real-time implementation of speech recognition and speech control system using dSPACE board)

  • 김재웅;정원용
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.173-176
    • /
    • 2000
  • 음성은 인간이 가진 가장 편리한 제어전송수단으로 이를 통한 제어는 인간에게 많은 편리함을 제공할 것이다. 본 논문에서는 다층구조 신경망(Multi-Layer Perceptron)을 이용하여 간단한 음성인식 명령처리시스템을 Matlab 상에서 구성해 보았다. 음성인식을 통한 제어의 목적을 위해 화자종속, 고립단어인식기를 목표로 설정하여 연구를 수행하였다. 음성의 시작점과 끝점을 검출하기 위해 단구간 에너지와 영교차율(ZCR)을 이용하였고 인식기의 특징파라미터로는 12차 LPC켑스트럼 계수를 사용하였다. 그리고 신경망의 출력값을 기동, 정지시에 활성화되도록 3개의 계층으로 하였고, 신경망의 뉴런의 개수를 각각 12, 12, 2으로 설정하였다. 먼저 기준음성패턴으로 학습시킨 후에 Matlab 환경하에 동작하는 dSPACE 실시간처리보드에 변환된 C프로그램을 다운로드하고, 음성을 입력하여 인식 후 dSPACE보드의 D/A컨버터의 출력단에 연결된 DC모터를 기동, 정지제어를 수행하였다. 실시간 음성인식 명령처리 시스템 구현을 통하여 원격제어와 같은 음성명령을 통한 제어가 가능함을 확인할 수 있었다.

  • PDF

칼라정보와 턱선의 구조적 특징자를 이용한 얼굴 인식 알고리즘 (Human Face Recognition Using Color Informations and Geometrical Features of Chin line)

  • 이명영;문인수;이응주
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.209-212
    • /
    • 2000
  • 본 논문에서는 칼라 CCD 카메라로부터 입력된 얼굴 영상에서 칼라 정보와 눈, 코, 입 등의 얼굴 영역 특징자 및 턱선의 선형적 특징을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함께 이용함으로써 얼굴영역 추출의 효율을 높였고, 적응적인 추출이 가능하도록 하였다. 또한 추출된 얼굴 영역에서 얼굴 인식율 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 턱선의 선형적인 특징값을 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보를 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 구조적 특징자 외에 턱선의 선형적인 관계값을 이용함으로써 인식 효율을 개선하였다.

  • PDF

영한 음차 변환을 이용한 무제한 음성인식 및 합성기의 구현 (An Implementation of Unlimited Speech Recognition and Synthesis System using Transcription of Roman to Hangul)

  • 양원렬;윤재선;홍광석
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.181-184
    • /
    • 2000
  • 본 논문에서는 영한 음차 변환을 이용한 음성인식 및 합성기를 구현하였다. 음성인식의 경우 CV(Consonant Vowel), VCCV, VCV, VV, VC 단위를 사용하였다. 위의 단위별로 미리 구축된 모델을 결합함으로써 무제한 음성인식 시스템을 구축하였다. 따라서 영한 음차 변환을 이용하게 되면 인식 대상이 영어단어일 경우에도 이를 한글 발음으로 변환한 후 그에 해당하는 모델을 생성함으로써 인식이 가능하다. 음성 합성기의 경우 합성에 필요한 한국어 음성 데이터 베이스를 구축하고, 입력되는 텍스트에 따라 이를 연결하여 합성음을 생성한다. 영어가 입력될 경우 영한 음차 변환을 이용하여 입력된 영어발음을 한글로 바꾸어 준 후 입력하게 되므로 별도의 영어 합성기 없이도 합성음을 생성할 수 있다.

  • PDF

학습 기반의 자동차 번호판 인식 시스템 (Learing-based approach for License Plate Recognition)

  • 김종배;김갑기;김항준
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.273-276
    • /
    • 2000
  • 자동차 번호판은 조명과 카메라에 따라 영상에서 다양한 형태로 나타나고 영상내의 잡음으로 인해 알고리즘 방식으로 자동차 번호판을 인식하기가 쉽지 않다. 이러한 문제에 적합한 해결 방법으로 본 논문에서는 학습 기반의 자동차 번호판 인식 시스템을 제안한다. 제안한 시스템은 자동차 검출 모듈, 번호판 추출 모듈, 번호판 문자인식 모듈로 구성된다. 본 논문에서는 자동차 번호판 추출을 위해서 시간-지연 신경망(Time-Delay Neural Networks : TDNN)과 번호판 인식을 위해서 일반적인 신경망보다 일반화 성능이 뛰어난 서포트 벡터 머신(Support Vector Machines : SVMs)을 시스템에 적용한다. 주차장과 톨케이트에서 여러 시간대의 움직이는 자동차 영상들을 실험한 결과, 자동차 검출율은 100%, 번호판 추출율은 97.5%, 번호판 문자 인식율은 97.2%의 성능을 내었고, 전체 시스템 성능은 94.7%이며 처리 시간은 약 1초 미만이다. 따라서 본 논문에서 제안한 시스템은 실세계에서 유용하게 적용될 수 있다.

  • PDF

얼굴 특징자들의 구조적 특성과 누적 히스토그램을 이용한 얼굴 표정 인식 알고리즘 (Face Expression Recognition Algorithm Using Geometrical Properties of Face Features and Accumulated Histogram)

  • 김영일;이응주
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 얼굴의 구조적 특성과 누적 히스토그램을 이용하여 다양한 정보를 포함하고 있는 얼굴의 6가지 표정을 인식하는 알고리즘을 기술하였다. 표정 인식을 위해 특징점 추출 전처리 과정으로 입력 영상으로부터 에지 추출, 이진화, 잡음 제거, 모폴로지 기법을 이용한 팽창, 레이블링 순으로 적용한다. 본 논문은 레이블 영역의 크기를 이용해 1차 특징점 영역을 추출하고 가로방향의 누적 히스토그램 값과 대칭성의 구조적인 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확하게 눈과 입을 찾아낸다. 또한 표정 변화를 정량적으로 측정하기 위해 추출된 특징점들의 눈과 입의 크기, 미간 사이의 거리 그리고 눈에서 입까지의 거리 정보를 이용하여 표정을 인식한다. 1, 2차 특징점 추출 과정을 거치므로 추출률이 매우 높고 특징점들의 표정에 따른 변화 거리를 이용하므로 표정 인식률이 높다. 본 논문은 안경 착용 영상과 같이 복잡한 얼굴 영상에서도 표정 인식이 가능하다.

  • PDF