• Title/Summary/Keyword: 신호추출

Search Result 2,063, Processing Time 0.026 seconds

Shearing Phase Lock-in Infrared Thermography for Defects Evaluation of Metallic Materials Specimen (금속재료 시편의 결함평가에 대한 전단위상 Lock-in 적외선열화상 연구)

  • Park, Jeong-Hak;Choi, Man-Yong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • This paper proposes method to evaluate the location and size of the internal defects of metallic specimens by the shearing phase lock-in infrared thermography. Until now, infrared thermography test for metal specimen of STS304 and Cu-Zn were conducted to find the best test conditions. However, In unspecified situation of the form and existence of defects, there was a disadvantage to takes a long time for finding the optimal experimental conditions. The defect detection and evaluation was performed at 60 MHz signal using lock-in and shearing-phase method under limited heating conditions. By shearing-phase distribution method, Defects for the maximum, minimum and zero points were quantitatively detected at the size and location of the subsurface. As results, application of the proposed technique was verified for STS304 and Cu7-Zn3 with artificial defect and factors affected defect evaluation were searched and analyzed.

Measurement of Local Motional Characteristics of Cilia in Respiratory Epithelium Using Image Analysis (영상 분석 방법을 이용한 점막 세포 섬모의 국소적 운동 특성(CBF)의 정량화에 관한 연구)

  • 이원진;박광석
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 1998
  • By their rapid and periodic actions, the cilia of the human respiratory tract play an important role in clearing inhaled noxious particles. Based on the automated image-processing technique, we studied the method analyzing ciliary beat frequency (CBF) objectively and quantitatively. Microscopic ciliary images were transformed into digitized gray ones through an image-grabber, and from these we extracted signals for CBF. By means of a FFT, maximum peak frequencies were detected as CBFs in each partitioned block for the entire digitized field. With these CBFs, we composed distribution maps visually showing the spatial distribution of CBFs. Through distribution maps of CBF, the whole aspects of CBF changes for cells and the difference of CBF of neighboring cells can be easily measured and detected. Histogram statistics calculated from the user-defined polygonal window can show the local dominant frequency presumed to be the CBF of a cell or a crust the region includes.

  • PDF

Structural Health Monitoring of Full-Scale Concrete Girder Bridge Using Acceleration Response (가속도 응답을 이용한 실물 콘크리트 거더 교량의 구조건전성 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2010
  • In this paper, a two-phase structural health monitoring system using acceleration response signatures are presented to firstly alarm the change in structural condition and to secondly detect the changed location for full-scale concrete girder bridges. Firstly, Mihocheon Bridge which is a two-span continuous concrete girder bridge is selected as the target structure. The dynamic response features of Mihocheon Bridge are extracted by forced vibration test using bowling ball. Secondly, the damage alarming occurrence and the damage localization techniques are selected to design two-phase structural health monitoring system for Mihocheon Bridge. As the damage alarming techniques, auto-regressive model using time-domain signatures, correlation coefficient of frequency response function and frequency response ratio assurance criterion are selected. As the damage localization technique, modal strain energy-based damage index method is selected. Finally, the feasibility of two-phase structural health monitoring systems is evaluated from static loading tests using a dump truck.

Optimal EEG Channel Selection using BPSO with Channel Impact Factor (Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • Brain-computer interface based on motor imagery is a system that transforms a subject's intention into a control signal by classifying EEG signals obtained from the imagination of movement of a subject's limbs. For the new paradigm, we do not know which positions are activated or not. A simple approach is to use as many channels as possible. The problem is that using many channels causes other problems. When applying a common spatial pattern (CSP), which is an EEG extraction method, many channels cause an overfit problem, in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest a binary particle swarm optimization with channel impact factor in order to select channels close to the most important channels as channel selection method. This paper examines whether or not channel impact factor can improve accuracy by Support Vector Machine(SVM).

Composition of efficient monitoring system using an interpolation (보간법을 이용한 효율적인 모니터링 시스템 구성)

  • Lee, Sang-Hyeok;Kang, Feel-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.290-298
    • /
    • 2008
  • This paper presents an efficient data storage and reconstruction method in data acquisition and processing of monitoring system. The proposed method extracts minimum data using an interpolation from raw data which are acquired from a target system. They are transferred and saved in a monitoring PC via TCP/IP communication, and then reconstructed as original signals. Therefore, it is possible to design an efficient monitoring system by the improved data communication speed due to the reduced communication packet, and it reduces the storage space. The algorithm for data acquisition and reconstruction is based on Cubic Hermite interpolation. To verify the validity of the proposed scheme, we presents simulation results compared with other interpolation based approaches. Finally, it is applied to a monitoring system for grid-connected photovoltaic power generation system to prove the high-performance of the proposed method.

The Removal of Noisy Bands for Hyperion Data using Extrema (극단화소를 이용한 Hyperion 데이터의 노이즈 밴드제거)

  • Han, Dong-Yeob;Kim, Dae-Sung;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.275-284
    • /
    • 2006
  • The noise sources of a Hyperion image are mainly due to the atmospheric effects, the sensor's instrumental errors, and A/D conversion. Though uncalibrated, overlapping, and all deep water absorption bands generally are removed, there still exist noisy bands. The visual inspection for selecting clean and stable processing bands is a simple practice, but is a manual, inefficient, and subjective process. In this paper, we propose that the extrema ratio be used for noise estimation and unsupervised band selection. The extrema ratio was compared with existing SNR and entropy measures. First, Gaussian, salt and pepper, and Speckle noises were added to ALI (Advanced Land Imager) images with relatively low noises, and the relation of noise level and those measures was explored. Second, the unsupervised band selection was performed through the EM (Expectation-Maximization) algorithm of the measures which were extracted from a Hyperion images. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The experimental result showed that the extrema ratio could be used effectively for band selection of Hyperion images.

Perceptual Generative Adversarial Network for Single Image De-Snowing (단일 영상에서 눈송이 제거를 위한 지각적 GAN)

  • Wan, Weiguo;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.403-410
    • /
    • 2019
  • Image de-snowing aims at eliminating the negative influence by snow particles and improving scene understanding in images. In this paper, a perceptual generative adversarial network based a single image snow removal method is proposed. The residual U-Net is designed as a generator to generate the snow free image. In order to handle various sizes of snow particles, the inception module with different filter kernels is adopted to extract multiple resolution features of the input snow image. Except the adversarial loss, the perceptual loss and total variation loss are employed to improve the quality of the resulted image. Experimental results indicate that our method can obtain excellent performance both on synthetic and realistic snow images in terms of visual observation and commonly used visual quality indices.

Performance comparison of lung sound classification using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 폐음 분류 방식의 성능 비교)

  • Kim, Gee Yeun;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • In the diagnosis of pulmonary diseases, auscultation technique is simpler than the other methods, and lung sounds can be used for predicting the types of pulmonary diseases as well as identifying patients with pulmonary diseases. Therefore, in this paper, we identify patients with pulmonary diseases and classify lung sounds according to their sound characteristics using various convolutional neural networks, and compare the classification performance of each neural network method. First, lung sounds over affected areas of the chest with pulmonary diseases are collected by using a single-channel lung sound recording device, and spectral features are extracted from the collected sounds in time domain and applied to each neural network. As classification methods, we use general, parallel, and residual convolutional neural network, and compare lung sound classification performance of each neural network through experiments.

Enhanced Local Directional Pattern based video shot boundary detection and automatic synchronization for STB quality inspection (STB 품질검사를 위한 개선된 지역 방향 패턴 기반 비디오 샷 경계 검출 및 자동 동기화)

  • Cho, Youngtak;Chae, Oksam
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.8-15
    • /
    • 2019
  • Recently, the importance of pre-shipment quality inspection has been emphasized due to the increase of STB supply. In this paper, we propose a method to support automation of quality inspection through simultaneous multi-channel input of STB video signal. The proposed method extracts a fingerprint using the center scan line of the image after stable video shot boundary detection using CeLDP combining color information and LDP code and performs synchronization between input video channels. The proposed method shows stronger shot boundary detection performance than the conventional shot detection method. Through the experiments applied to the real environment, it is possible to secure reliability and real-time quality check for synchronization between multi-channel inputs required for STB quality inspection. Also, based on the proposed method, we intend to study a large-scale quality inspection method in the future and propose a more effective quality inspection system.

A Study on Fingerprint-Based Coil Alignment Improvement Technique for Magnetic Resonant Wireless Power Transfer System (핑거프린트 방식의 자기 공진형 무선전력전송 코일 정렬 상태 개선 기법 연구)

  • Kim, Sungjae;Lee, Euibum;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This paper proposes fingerprint-based positioning methods which can be used in a magnetic resonant wireless power transfer(WPT) system and verifies their performance. A new receiver coil with small orthogonal auxiliary coils is proposed to measure magnetic field signals in three axial directions. The magnitude and phase characteristics of the three-axis electromotive force can be obtained by using the proposed coil. To predict a position with the measured values, we propose a lookup table-based method and linear discriminant analysis-based method. For verification, the proposed methods are applied to predict 75 positions of the 6.78 MHz WPT system, and the performances such as accuracy and computation time are compared.