• Title/Summary/Keyword: 신호세기기반 위치추정 알고리즘

Search Result 18, Processing Time 0.02 seconds

RSSI based Cooperative Localization Algorithm Considering Wireless Propagation Characteristics in Indoor Environment (실내 환경에서 무선 전파특성을 고려한 수신신호세기 기반의 협력 위치추정 알고리즘)

  • Jeong, Seung-Heui;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.875-878
    • /
    • 2010
  • In this paper, we proposed a RSSI based cooperative localization algorithm considering wireless propagation characteristics in indoor environment for wireless sensor networks, which can estimate the BN position. The conventional RSSI based estimation scheme has low precision ranging according to time variable propagation characteristics. Hence, we implemented ray-launching simulator for analysis of propagation characteristics in $13.65m{\times}8.7m$, and performed proposed localization scheme with 4 RN and 1 to 5 BN. From the results, if we can consider channal characteristic in proposed ranging scheme, the cooperative localization algorithm with propagation characteristics provides higher localization accuracy than RSSI based conventional one.

  • PDF

Performance Analysis of Cooperative Localization Algorithm Considering Wireless Propagation Characteristics (무선 전파특성을 고려한 협력 위치추정 알고리즘 성능분석)

  • Jeong, Seung-Heui;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1511-1519
    • /
    • 2010
  • In this paper, we proposed and analyzed a RSSI based cooperative localization algorithm considering wireless propagation characteristics in indoor and outdoor environments for wireless sensor networks, which can estimate the BN position. The conventional RSSI based estimation scheme has low precision ranging due to instability propagation characteristics by time variable. Hence, we implemented ray-launching simulator for analysis of propagation characteristics in 4 case, and experimented proposed localization scheme with 4 RN and 1 to 5 BN. Simulation results show that NLCA has estimation error as 2m-3.5m, however, proposed CLA/ECLA has 1.3m-2.5m/0.5m-1.2m by same environments. Therefore, if we can consider channel characteristics, the proposed algorithm provides higher localization accuracy than RSSI based conventional one.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

A RSS-Based Localization Method Utilizing Robust Statistics for Wireless Sensor Networks under Non-Gaussian Noise (비 가우시안 잡음이 존재하는 무선 센서 네트워크에서 Robust Statistics를 활용하는 수신신호세기기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2011
  • In the wireless sensor network(WSN), the detection of precise location of sensor nodes is essential for efficiently utilizing the sensing data acquired from sensor nodes. Among various location methods, the received signal strength (RSS) based localization scheme is mostly preferable in many applications since it can be easily implemented without any additional hardware cost. Since the RSS localization method is mainly effected by radio channel between two nodes, outlier data can be included in the received signal strength measurement specially when some obstacles move around the link between nodes. The outlier data can have bad effect on estimating the distance between two nodes such that it can cause location errors. In this paper, we propose a RSS-based localization method using Robust Statistic and Gaussian filter algorithm for enhancing the accuracy of RSS-based localization. In the proposed algorithm, the outlier data can be eliminated from samples by using the Robust Statistics as well as the Gaussian filter such that the accuracy of localization can be achieved. Through simulation, it is shown that the proposed algorithm can increase the accuracy of localization and is more robust to non gaussian noise channels.

A RSS-Based Localization for Multiple Modes using Bayesian Compressive Sensing with Path-Loss Estimation (전력 손실 지수 추정 기법과 베이지안 압축 센싱을 이용하는 수신신호 세기 기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In Wireless Sensor Network(WSN)s, the detection of precise location of each node is essential for utilizing sensing data acquired from sensor nodes effectively. Among various location methods, the received signal strength(RSS) based localization scheme is mostly preferable in many applications because it can be easily implemented without any additional hardware cost. Since a RSS-based localization scheme is mainly affected by radio channel or obstacles such as building and mountain between two nodes, the localization error can be inevitable. To enhance the accuracy of localization in RSS-based localization scheme, a number of RSS measurements are needed, which results in the energy consumption. In this paper, a RSS based localization using Bayesian Compressive Sensing(BSS) with path-loss exponent estimation is proposed to improve the accuracy of localization in the energy-efficient way. In the propose scheme, we can increase the adaptative, reliability and accuracy of localization by estimating the path-loss exponents between nodes, and further we can enhance the energy efficiency by the compressive sensing. Through the simulation, it is shown that the proposed scheme can enhance the location accuracy of multiple unknown nodes with fewer RSS measurements and is robust against the channel variation.

A Study on Cooperative Based Location Estimation Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서 상호 협력 기반 위치추정 알고리즘 연구)

  • Jeong, Seung-Heui;Lee, Hyun-Jae;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.857-860
    • /
    • 2008
  • In this paper, we proposed cooperative based localization algorithm for wireless sensor networks, which can estimate to unknown node position using received signal strength table set. The unknown nodes are monitor to RSS from neighbor nodes and exclude existence possibility area of sensor node in sensor field. Finally, we can calculate the centroid position for each unknown node with cooperative localization algorithm. Furthermore, these processes are applied iteratively about all nodes which is recorded to RSS table and can estimate for unknown nodes.

  • PDF

Analysis of Localization Scheme for Ship Application Using Received Signal Strength (수신 신호 세기를 이용한 선박용 실내 위치 추정 알고리즘 분석)

  • Lee, Jung-Kyu;Lee, Seong Ro;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.643-650
    • /
    • 2014
  • Recently, the wireless communication applications are studied in various environment by the development of short range communication system like wireless sensor networks. This paper presents the analysis of localization schemes for ship application using received signal strength. The localization schemes using received signal strength from wireless networks are classified under two methods, which are Range based method and Range free method. Range based methods estimate the location with least square estimation based on estimated distance using path-loss model. Range free methods estimated the location with the information of anchor nodes linked to target. Simulation results show the appropriate localization scheme for each cabin environments based on the empirical path-loss model in warship's internal space.

Performance Analysis of the Cooperative Localization Algorithm with Virtual Reference Nodes in Wireless Sensor Networks (무선 센서네트워크 환경에서 VRN을 이용한 협력 위치추정 알고리즘의 성능 분석)

  • Jeong, Seung-Heui;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.619-626
    • /
    • 2008
  • In this paper, we proposed a RSS based cooperative localization algorithm using VRN for wireless sensor networks, which can estimate the BN position. The proposed localization system monitoring all nodes estimates a position of BN, and calculates an intersection area with cooperative localization. From the results, we confirm that BN intersection area is reduced as the number of RN is increased. In addition, the fewer RN exists, the more iteration needs at least 4 times. Moreover, the propose algorithm using 4 RNs is improved 71.6% estimation performance than conventional method. Therefore, the cooperative localization algorithm with VRN provides higher localization accuracy than RSS based conventional method.

  • PDF

Positioning Algorithm Based on the Information of Range-Data Reliability (거리 데이터 신뢰도 정보 기반 위치 검출 알고리즘)

  • Koo, In-Soo;Xuan, Cong Tran;Kim, Eun-Chan;Choi, Sung-Soo
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.51-59
    • /
    • 2008
  • In wireless sensor networks, one of most common location detection methods that do not require additional devices such as GPS and ultrasonic sensor, is the location detection method based on received signal strength. However, measured received signal strength will fluctuate over time mainly due to physical radio channel characteristics between nodes, which subsequently will cause errors to measured distance between nodes. Since these contaminated distance data are utilized to detect the location of unknown node, there will be accumulated errors in the location of unknown node. In order to overcome the limitation of the location detection method based on received signal strength, we propose a location scheme in which reliability information of distance data as well as distance data between nodes are utilized to estimate the location of unknown node. Through simulation, it is shown that the proposed scheme can accomplish 30% capacity improvement.

  • PDF

User Positioning Method Based on Image Similarity Comparison Using Single Camera (단일 카메라를 이용한 이미지 유사도 비교 기반의 사용자 위치추정)

  • Song, Jinseon;Hur, SooJung;Park, Yongwan;Choi, Jeonghee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1655-1666
    • /
    • 2015
  • In this paper, user-position estimation method is proposed by using a single camera for both indoor and outdoor environments. Conventionally, the GPS of RF-based estimation methods have been widely studied in the literature for outdoor and indoor environments, respectively. Each method is useful only for indoor or outdoor environment. In this context, this study adopts a vision-based approach which can be commonly applicable to both environments. Since the distance or position cannot be extracted from a single still image, the reference images pro-stored in image database are used to identify the current position from the single still image captured by a single camera. The reference image is tagged with its captured position. To find the reference image which is the most similar to the current image, the SURF algorithm is used for feature extraction. The outliers in extracted features are discarded by using RANSAC algorithm. The performance of the proposed method is evaluated for two buildings and their outsides for both indoor and outdoor environments, respectively.