• Title/Summary/Keyword: 신율

Search Result 169, Processing Time 0.022 seconds

Effect of Red Mud Addition to Polyolefin (폴리올레핀에 대한 적니의 첨가효과)

  • Lee, Keun Young;Kim, Jeong Ho
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.93-99
    • /
    • 2000
  • Effect of amount of red mud and processing method on the tensile and impact properties of polymers were investigated when the red mud was added as a filler to polypropylene (PP), low density polyethylene (LDPE) and PP/LDPE blend. Especially in case of PP, increase in the tensile strength, elongation at break and absorbed energy was observed when extrusion was carried out more than two times. Tensile strength showed a very remarkable increase when master batch was used in comparison with simple multiple extrusion. In case of LDPE, 10% addition of red mud resulted in the increase of tensile modulus and impact strength, while 20% addition caused a decrease in the same properties. Addition of 5% EVA could reverse this trend. Addition of 20% red mud to PP/LDPE blend gave a decrease in impact strength but 5% EPR compatibilizer could improve the impact properties. Above results showed that the processing method is a very important factor in the utilization of red mud as a plastic fillers and master batch is one of the very effective way of red mud addition.

  • PDF

Synthesis and Properties of Waterborne Polyurethane Acrylate Adhesive (수분산 폴리우레탄 아크릴 접착제의 합성 및 물성 연구)

  • Lee, Seung Hwan;Cheon, Jung Mi;Jeong, Boo Young;Kim, Han-Do;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.156-161
    • /
    • 2015
  • In this study, waterborne polyurethane acrylate were synthesized with polyester polyol, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA), acrylate monomer to improve the properties and peel strength. In addition, the properties of the synthesized waterborne polyurethane acylate was evaluated through FT-IR, particle size analysis, UTM, peel strength. As the acrylic acid content increased, particle size increased. In the results of mechanical properties, when the acrylic acid contents increased, tensile strength was increased but elongation was decreased. All peel strength was improved as the acrylic acid contents of WPUA and acrylate ratio of PU/acrylate increased. Optimum peel strength obtained when acrylic acid was 0.5 wt%.

Film Properties of Cold Blending Emulsion Between Poly(vinyl Acetate) and Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate)와 Poly(vinyl acetate-co-ethylene) 에멀젼을 이용한 상온 블렌드 에멀젼의 Film 특성)

  • Kim, Ho-Young;Yoo, Sung-Hee;Choi, Yong-Hae
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.117-124
    • /
    • 2011
  • This study was made on the poly(vinyl acetate) (PVAc) and poly(vinyl acetate- ethylene) (VAE) emulsion polymer blend which used PVA as protective colloid, and the PVA used as protective colloid was existed in each emulsion film before blend and even in the film after the blend consecutively. It makes us expect excellent adhesive power among particles that form the blend. Emulsion blends with different Tg are important target of concerning, and PVAc/VAE emulsion blend suggested simple and excellent research method. As a result of blend, elongation was lowered by the increase of PVAc, and the plasticizer used in making PVAc affected on the Tg of blend and lowered Tg of VAE emulsion, and the synergy effect of two blends was seen for the tensile strength, thermal resistance, and adhesive strength.

Influence of Mixing Procedure on Properties of Rubber Compounds Filled with Both Silica and Carbon Black (배합 공정이 실리카와 카본블랙으로 보강된 고무 배합물의 특성에 미치는 영향)

  • Joo, Chang-Whan;Kim, Dong-Chul;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.14-20
    • /
    • 2002
  • Silica-filled rubber compound needs longer mixing time compared to carbon black-filled one since it has poor dispersion or the filler. Influence of the mixing procedure on the properties of natural rubber compound filled with both silica and carbon black was studied. The discharge temperature of the master batch (MB) mixing was $150^{\circ}C$. The mixing time was longer when silica and carbon black were loaded separately than when loaded simultaneously. The mixing time was longer when silica was loaded first than when carbon black is loaded first. The compounds prepared by one MB step (conventional mixing) were compared with the compounds prepared by two MB steps (two-step mixing). Scorch times of the two-step mixing compounds were longer than those by the conventional mixing ones. Bound rubber contents of the formers were lower than those of the tatters. The two-step mixing vulcanizates had longer elongation at break, higher tensile strength, and better fatigue life.

Characterization of Crazing Behavior in Polystyrene (Polystyrene 의 Crazing 거동 특성)

  • Jeon, Dae-Jin;Kim, Seok-Ho;Kim, Wan-Young
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.142-152
    • /
    • 2004
  • Tensile tests of two types of injection-molded polystyrene(PS) samples have been carried out over a wide range of temperature and strain rates in order to characterize their crazing behaviors. Mechanical properties were affected by the formation of crazes as well as test variables. Below the brittle-ductile transition temperature, the tensile stress and the ultimate elongation increased with the molecular weight, strain rate, and with decreasing temperature while the number and average length of crazes also increase. The crazing stress increased with molecular weight, strain rate, and with decreasing temperature. However, the dependence was small compared to the tensile stress. The gap between crazing stress and tensile stress which represents time fur craze formation and growth increased with molecular weight, strain rate, and with decreasing temperature. Crazing was activated near the ${\beta}$-relaxation temperature; crazing stress abruptly decreased at this temperature. During the tensile test, the craze density changed exponentially with the applied stress. At the initial stage, crazes formed slowly. Once a certain number of craze formed, however, the craze density increased rapidly. Craze nucleation and growth occur simultaneously.

Development of Rubber Composite Materials Using Waste EPDM (폐 EPDM을 이용한 고무 복합 소재 개발)

  • Park, Dong-Kyu;Hong, Yeo-Joo;Jeong, Keuk-Min;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Waste EPDM(W-EPDM) collected from the automotive weather strip and the gasket of a laundry machine has not been effectively recycled. Using this W-EPDM powder and other ingredients, i.e., binder(polyolefin resin, polyolefin elastomer, etc.), filler and additives, various economic rubber composites were made by extrusion. In advance of main experiments, the effects of ultrasonic treatment of W-EPDM on the property of rubber composites, comparison in the property of the composites of W-EPDM with those of virgin and devulcanized EPDM, and waste tire rubber were investigated. Also, the properties of the rubber composites extruded with a 12-screw extruder were compared with those extruded with twin-screw extruder. Various W-EPDM composites for synthetic turf filler and car mat were extruded and injection molded, and 3 main properties of tensile strength, elongation and hardness were investigated to develop economical and proper recipes of the rubber composites.

Influence of Blend Mode of Extender Oil on the Properties of EPDM/PP-Based Thermoplastic Vulcanizates (이피디엠/폴리프로필렌 열가소성 경화물에서 오일의 블렌드 방식이 경화물의 물성에 미치는 영향)

  • Na, Sung-Su;Song, Ki-Chan;Kim, Su-Kyung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Influence of blend mode of extender oil on the properties of thermoplastic vulcanizates (TPVs), based on an ethylene-propylene-diene copolymer (EPDM) and a polypropylene (PP), was studied. The EPDM/PP TPVs were prepared in an open roll mill using two different modes in blending sequence of paraffinic oil and phenolic curative, i.e., Oil-Cure and Cure-Oil modes. Degree of cross-linking by gel fraction and properties such as hardness, tensile strength, elongation at break, and melt flow rate were investigated as a function of extender oil content for the two modes. Little influence of the blend mode of extender oil on the degree of cross-linking and mechanical behaviors was observed. However, the use of Cure-Oil mode in the preparation of EPDM/PP TPVs resulted in a marked increase in the level of processability as reflected by melt flow index, as compared to the use of Oil-Cure mode.

Peroxide Modification of Nylon 12 Elastomer (Peroxide 개질에 따른 Nylon 12 elastomer의 특성 연구)

  • Choi, Myung-Chan;Jung, Ji-Yeon;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Nylon 12 elastomer was slightly crosslinked in molten state by the addition of small amount of dicumyl peroxide (DCP) as a crosslink agent and triallycyanuate (TAC) as a co-agent during melt compounding at $160^{\circ}C$ in an internal mixer. The effect of the peroxide crosslinking on mechanical, dynamic mechanical and rheological properties of the nylon 12 elastomer was investigated by means of tensile testing, dynamic mechanical analysis (DMA) and small amplitude oscillating rheometer, respectively. With modification, there is an improvement in tensile modulus and Young's modulus with decease in elongation at break. DMA results for peroxide modified nylon 12 elastomers demonstrated that the glass transiaiton temperature of PTMG segment shifted to higher temperature and the storage modulus remained constant above the melting temperature of nylon 12 segments. Melt rheological studies revealed that the peroxide modified nylon 12 elastomer exhibited a more solid like behavior and stronger shear thinning behavior compared to neat nylon 12 elastomer, which was more prominent at higher TAC content in the polymer matrix. The peroxide modified nylon 12 elastomer exhibited good elastic recoverability and improved mechanical properties without sacrificing melt processibilty, and especially the service temperature range increased as compared to neat nylon 12 elastomer.

Molecular Structure and Tensile Properties Change of Crosslinked Polyethylene Pipes during Oxidative Degradation Process (산화열화과정 중 가교폴리에틸렌 파이프의 분자구조 및 인장 특성 변화)

  • Park, Sung-Gyu;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.520-524
    • /
    • 2009
  • The effects of oxidative degradation on the performance of crosslinked polyethylene pipes were analyzed by the investigation of tensile properties and chemical structure change of the pipes during oxidative degradation. Annealing at high temperatures or UV irradiation method was used to induce the oxidative degradation of the crosslinked polyethylene pipes and the effects of the die temperature on the oxidative degradation of the pipes were also investigated. The tensile properties and chemical structure change of the pipes were investigated by universal testing machine and FT-IR, respectively. With the progress of thermo-oxidative degradation the tensile strength of the pipes slowly decreased but the elongation at break rapidly decreased, and the chemical structure of the pipes also changed considerably because of the introduced oxygen molecules. These results would be useful in estimating the performance deterioration of the crosslinked polyethylene pipes due to the oxidative degradation during production and storage.

Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier - (PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -)

  • Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.112-119
    • /
    • 2010
  • Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.