신용평점을 위한 부도예측의 분류 문제를 다루는데 있어서 통계적 판별분석 및 인공신경망 및 유전자알고리즘 등을 이용한 데이터 마이닝의 방법들이 일반적으로 고려되어왔다. 이 연구에서는 수리계획법을 응용하여 classification gap을 고려한 이단계 수리계획 접근방법을 신용평가에 적용하는 방법론을 제안하여 수리계획법을 통한 신용평가모형 구축의 가능성을 제시한다. 1단계에서는 선형계획법을 이용해서 대출 신청자에게 대출을 허가할 것 인지의 여부를 결정하게 되는 대출 심사 filtering으로의 적용단계이고, 2단계에서는 정수계획법을 이용하여 오분류 비용이 최소가 되도록 하는 판별점수를 찾는 과정으로 모형을 구성한다. 개인 대출 신청자의 데이터(German Credit Data)에 대하여 피셔의 선형 판별함수, 로지스틱 회귀모형 및 기존의 수리계획 기법들과의 비교를 통해서 제안된 모델의 성능을 평가한다. 이단계 수리계획 접근법의 평가 결과를 통하여 신용평가모형에의 적용가능성을 기존 통계적인 접근방법 및 수리계획 접근법과 비교하여 제시하고 있다.
귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.
은행과 신용카드 업계에 있어, 고객의 다음 신용 카드 사용처(다음 방문 가맹점)를 예측할 수 있다면 고객의 라이프 스타일을 파악 할 수 있으며, 여러 프로모션과 비즈니스 기회를 포착할 수 있어 매출 증대를 꾀할 수 있다. 우리가 제안하는 모델은 고객이 다음에 방문할 가맹점을 예측/추천하는 것을 목표로 한다. 가맹점 방문과 같이 순차적으로 발생하는 이벤트에는 노이즈가 있을 수 있다. 이 노이즈를 제거하기 위해 두 개의 신경망을 이용한 DoubleDNN을 제안한다. 실험은 BC카드사의 데이터분포를 따르는 인공 생성된 신용카드 사용내역 데이터를 이용하였으며, DoubleDNN은 기존의 다른 추천 모델보다 좋은 성능을 보였다.
최근 들어 기술을 담보로 하는 신용금융의 역할이 증대되면서 자금지원 대상기업의 기술평가 시스템 구축이 중요한 과제가 되고 있다. 국내에서는 기업 보유의 기술경영성과를 측정하여 한정된 자원의 효율적 배분을 위한 민간 투, 융자를 위한 기술신용평가모형'이 제시되었다 본 연구에서는 기술신용평가모델의 평가항목 타당성을 실증 분석한다. 모형의 항목 분류가 적절하게 되었는지를 검증하기 위하여 구조적 타당성을 평가하며 통계적 유의성을 검증하여 신뢰성을 평가한다. 구조적 타당성 검정을 위해 확인 요인분석을 수행하며 평가모형의 신뢰성을 검증하기 위해서는 다변량 통계방법 중의 하나인 판별분석을 수행한다. 본 연구는 기술개발 성공 및 부실발생의 예측력을 갖는 기술신용평가 시스템 구축을 위한 기초 자료로 활용될 수 있을 것이다.
이 연구는 상선 해기사 인력의 수요를 단순평균법과 추세분석 및 시계열분석을 통혜 예측하고, 예측치와 실적치들을 비교하여 수요 예측방법들의 예측 정확도를 평가하였으며, 마이코프 분석을 활용하여 직급별로 인력구성의 변화요인을 고려하여 공급을 예측하고 인력부족을 진단하였다. 그리고 자율운항선 도입과 현실적인 공급확대 방안 실행이 부족인력 감소에 미치는 영향을 분석하여 해기사 인력 수급 대책의 타당성과 효과를 평가하였다.
Communications for Statistical Applications and Methods
/
제15권4호
/
pp.615-631
/
2008
재무자료에 대한 신용평가모형은 각각의 재무변수를 평활한 예측부도율로 변환하여 사용한다. 본 연구에서는 연속형 재무자료를 변환하여 설정된 신용평가모형의 문제점을 살펴보고, 연속형 재무변수를 다양한 형태로 범주화한 신용평가모형들을 제안한다. 범주형 재무자료를 사용해서 개발한 여러 종류의 신용평가모형들의 성과를 다양한 적합성 검증 방법으로 비교하고, 범주형 재무자료를 이용한 신용평가모형의 유용성을 토론한다.
기존의 기업부도 예측모델들은 장부가치를 기준으로 한 회계적 자료에 의존하여 부도확률을 평가함으로써 시장의 상황변화를 민감하게 반영하지 못하며, 이론적 배경도 약하다는 약점을 가지고 있었다. 그러나 시장정보형 부도예측모형은 기업의 부도예측에 시장가치를 이용함은 물론 Black-Scholes(1973)의 옵션가격결정이론이라는 옵션이론을 배경으로 하고 있어 최근 들어 많은 기업들이 신용리스크를 평가하는 데 사용하고 있으며 그 대표적인 모형이 KMV이다. 우리나라 기업들도 최근 들어 KMV를 많이 사용하고 있으나, 미국기업들과 부채구조가 다른 데도 미국에서 사용하는 KMV모형을 그대로 사용함으로써 부도시점 예측 시 오차가 발생한다는 문제를 가지고 있다. 본 연구에서는 부채구조가 다를 경우 KMV모형을 그대로 사용하면 안 되고 부도확률 산출 시 부채구조를 감안하여야 함을 실증적으로 입증하였다. 즉, KMV모형을 국내에 적용할 경우, 부도확률계산 시 고정부채의 편입비율 50%로 일률적으로 적용하는 것보다는 부채구조를 감안하여 20% 이하로 고정부채편입비율을 조정해야 부도예측능력이 제고된다는 것을 확인함으로써 기업의 신용리스크관리에 중요한 시사점을 제공하고 있다. 또한 IMF 외환위기와 같은 외부충격이 기업부도에 미치는 영향을 확인하였으며, 한국기업들의 경우 유동비율보다는 유동부채비중이 부도점 산정에 보다 중요함도 확인하였다.
금융시장 환경이 점차 변화하고 있다. 흔히 지점이라 불리는 오프라인 환경에서 애플리케이션을 이용하거나 웹페이지를 이용하는 온라인 비대면 환경으로 이동함에 따라 기존의 정형 정보를 중심으로 한 소비자 행동 예측 방법보다 더 나은 방법을 모색하기 이르렀다. 이에 따라 주관적 비정형 정보의 중요하게 된 것이다. 본 연구는 비대면 대출시장에서 주관적 비정형 정보의 하나인 SNS 프로필 사진과 대출상환에 영향을 미치는 변인을 파악하는 것을 목표로 한다. SNS 프로필 사진은 자신의 감정이나 상태를 표현하는 도구로 떠오르고 있으며, 이러한 차입자의 SNS 프로필사진을 분석함으로써 정보비대칭의 최소화로, 대출심사를 위한 신용평가에 유의적 요소들을 규명하는데 목적이 있다. 본 연구에서는 대출자들이 차입자에 대한 평가의 중요 고려 요소들을 규명하고 탐색하는데 초점을 맞춰 SNS 대안 신용평가만을 심사기준으로 이용한 대출인 텐스페이스의 AI LOAN 대출자중에서 2020년 2월부터 2020년 2월까지 대출자료를 확보할 예정이다. 이러한 자료 중에서 2020년 12월 30일을 기준으로 상환기일이 도래한 대출상환 자료 중 SNS사진을 순서형 로짓회귀모형을 이용해 분석하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.