• 제목/요약/키워드: 신용 예측

검색결과 212건 처리시간 0.031초

통합 수리계획법을 이용한 개인신용평가모형 (Consumer Credit Scoring Model with Two-Stage Mathematical Programming)

  • 이성욱;노태협
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제16권1호
    • /
    • pp.1-21
    • /
    • 2007
  • 신용평점을 위한 부도예측의 분류 문제를 다루는데 있어서 통계적 판별분석 및 인공신경망 및 유전자알고리즘 등을 이용한 데이터 마이닝의 방법들이 일반적으로 고려되어왔다. 이 연구에서는 수리계획법을 응용하여 classification gap을 고려한 이단계 수리계획 접근방법을 신용평가에 적용하는 방법론을 제안하여 수리계획법을 통한 신용평가모형 구축의 가능성을 제시한다. 1단계에서는 선형계획법을 이용해서 대출 신청자에게 대출을 허가할 것 인지의 여부를 결정하게 되는 대출 심사 filtering으로의 적용단계이고, 2단계에서는 정수계획법을 이용하여 오분류 비용이 최소가 되도록 하는 판별점수를 찾는 과정으로 모형을 구성한다. 개인 대출 신청자의 데이터(German Credit Data)에 대하여 피셔의 선형 판별함수, 로지스틱 회귀모형 및 기존의 수리계획 기법들과의 비교를 통해서 제안된 모델의 성능을 평가한다. 이단계 수리계획 접근법의 평가 결과를 통하여 신용평가모형에의 적용가능성을 기존 통계적인 접근방법 및 수리계획 접근법과 비교하여 제시하고 있다.

  • PDF

귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우 (Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating)

  • 이상호;지원철
    • 지능정보연구
    • /
    • 제4권2호
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF

이중 DNN을 이용한 가맹점 추천 시스템 (DoubleDNN) (Merchant Recommender System using Double DNN)

  • 칼리나 바야르체첵;나광택;이주홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.390-393
    • /
    • 2019
  • 은행과 신용카드 업계에 있어, 고객의 다음 신용 카드 사용처(다음 방문 가맹점)를 예측할 수 있다면 고객의 라이프 스타일을 파악 할 수 있으며, 여러 프로모션과 비즈니스 기회를 포착할 수 있어 매출 증대를 꾀할 수 있다. 우리가 제안하는 모델은 고객이 다음에 방문할 가맹점을 예측/추천하는 것을 목표로 한다. 가맹점 방문과 같이 순차적으로 발생하는 이벤트에는 노이즈가 있을 수 있다. 이 노이즈를 제거하기 위해 두 개의 신경망을 이용한 DoubleDNN을 제안한다. 실험은 BC카드사의 데이터분포를 따르는 인공 생성된 신용카드 사용내역 데이터를 이용하였으며, DoubleDNN은 기존의 다른 추천 모델보다 좋은 성능을 보였다.

기술신용평가모형의 타당성 검증 (A Verification of the validity for Technology/Credit Appraisal Model)

  • 김재범;조용곤;조근태
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.1068-1071
    • /
    • 2005
  • 최근 들어 기술을 담보로 하는 신용금융의 역할이 증대되면서 자금지원 대상기업의 기술평가 시스템 구축이 중요한 과제가 되고 있다. 국내에서는 기업 보유의 기술경영성과를 측정하여 한정된 자원의 효율적 배분을 위한 민간 투, 융자를 위한 기술신용평가모형'이 제시되었다 본 연구에서는 기술신용평가모델의 평가항목 타당성을 실증 분석한다. 모형의 항목 분류가 적절하게 되었는지를 검증하기 위하여 구조적 타당성을 평가하며 통계적 유의성을 검증하여 신뢰성을 평가한다. 구조적 타당성 검정을 위해 확인 요인분석을 수행하며 평가모형의 신뢰성을 검증하기 위해서는 다변량 통계방법 중의 하나인 판별분석을 수행한다. 본 연구는 기술개발 성공 및 부실발생의 예측력을 갖는 기술신용평가 시스템 구축을 위한 기초 자료로 활용될 수 있을 것이다.

  • PDF

상선해기사 수급 예측과 인력부족 진단 및 대응 분석

  • 이정경;신용존
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.269-271
    • /
    • 2022
  • 이 연구는 상선 해기사 인력의 수요를 단순평균법과 추세분석 및 시계열분석을 통혜 예측하고, 예측치와 실적치들을 비교하여 수요 예측방법들의 예측 정확도를 평가하였으며, 마이코프 분석을 활용하여 직급별로 인력구성의 변화요인을 고려하여 공급을 예측하고 인력부족을 진단하였다. 그리고 자율운항선 도입과 현실적인 공급확대 방안 실행이 부족인력 감소에 미치는 영향을 분석하여 해기사 인력 수급 대책의 타당성과 효과를 평가하였다.

  • PDF

범주형 재무자료에 대한 신용평가모형 검증 비교 (Validation Comparison of Credit Rating Models for Categorized Financial Data)

  • 홍종선;이창혁;김지훈
    • Communications for Statistical Applications and Methods
    • /
    • 제15권4호
    • /
    • pp.615-631
    • /
    • 2008
  • 재무자료에 대한 신용평가모형은 각각의 재무변수를 평활한 예측부도율로 변환하여 사용한다. 본 연구에서는 연속형 재무자료를 변환하여 설정된 신용평가모형의 문제점을 살펴보고, 연속형 재무변수를 다양한 형태로 범주화한 신용평가모형들을 제안한다. 범주형 재무자료를 사용해서 개발한 여러 종류의 신용평가모형들의 성과를 다양한 적합성 검증 방법으로 비교하고, 범주형 재무자료를 이용한 신용평가모형의 유용성을 토론한다.

기업의 부채구조를 고려한 옵션형 기업부도예측모형과 신용리스크 (Option-type Default Forecasting Model of a Firm Incorporating Debt Structure, and Credit Risk)

  • 원재환;최재곤
    • 재무관리연구
    • /
    • 제23권2호
    • /
    • pp.209-237
    • /
    • 2006
  • 기존의 기업부도 예측모델들은 장부가치를 기준으로 한 회계적 자료에 의존하여 부도확률을 평가함으로써 시장의 상황변화를 민감하게 반영하지 못하며, 이론적 배경도 약하다는 약점을 가지고 있었다. 그러나 시장정보형 부도예측모형은 기업의 부도예측에 시장가치를 이용함은 물론 Black-Scholes(1973)의 옵션가격결정이론이라는 옵션이론을 배경으로 하고 있어 최근 들어 많은 기업들이 신용리스크를 평가하는 데 사용하고 있으며 그 대표적인 모형이 KMV이다. 우리나라 기업들도 최근 들어 KMV를 많이 사용하고 있으나, 미국기업들과 부채구조가 다른 데도 미국에서 사용하는 KMV모형을 그대로 사용함으로써 부도시점 예측 시 오차가 발생한다는 문제를 가지고 있다. 본 연구에서는 부채구조가 다를 경우 KMV모형을 그대로 사용하면 안 되고 부도확률 산출 시 부채구조를 감안하여야 함을 실증적으로 입증하였다. 즉, KMV모형을 국내에 적용할 경우, 부도확률계산 시 고정부채의 편입비율 50%로 일률적으로 적용하는 것보다는 부채구조를 감안하여 20% 이하로 고정부채편입비율을 조정해야 부도예측능력이 제고된다는 것을 확인함으로써 기업의 신용리스크관리에 중요한 시사점을 제공하고 있다. 또한 IMF 외환위기와 같은 외부충격이 기업부도에 미치는 영향을 확인하였으며, 한국기업들의 경우 유동비율보다는 유동부채비중이 부도점 산정에 보다 중요함도 확인하였다.

  • PDF

SNS 프로필 사진이 대출상환에 미치는 영향: 카카오톡 메신저 사진을 중심으로

  • 정원훈;하규수
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2020년도 추계학술대회
    • /
    • pp.127-130
    • /
    • 2020
  • 금융시장 환경이 점차 변화하고 있다. 흔히 지점이라 불리는 오프라인 환경에서 애플리케이션을 이용하거나 웹페이지를 이용하는 온라인 비대면 환경으로 이동함에 따라 기존의 정형 정보를 중심으로 한 소비자 행동 예측 방법보다 더 나은 방법을 모색하기 이르렀다. 이에 따라 주관적 비정형 정보의 중요하게 된 것이다. 본 연구는 비대면 대출시장에서 주관적 비정형 정보의 하나인 SNS 프로필 사진과 대출상환에 영향을 미치는 변인을 파악하는 것을 목표로 한다. SNS 프로필 사진은 자신의 감정이나 상태를 표현하는 도구로 떠오르고 있으며, 이러한 차입자의 SNS 프로필사진을 분석함으로써 정보비대칭의 최소화로, 대출심사를 위한 신용평가에 유의적 요소들을 규명하는데 목적이 있다. 본 연구에서는 대출자들이 차입자에 대한 평가의 중요 고려 요소들을 규명하고 탐색하는데 초점을 맞춰 SNS 대안 신용평가만을 심사기준으로 이용한 대출인 텐스페이스의 AI LOAN 대출자중에서 2020년 2월부터 2020년 2월까지 대출자료를 확보할 예정이다. 이러한 자료 중에서 2020년 12월 30일을 기준으로 상환기일이 도래한 대출상환 자료 중 SNS사진을 순서형 로짓회귀모형을 이용해 분석하고자 한다.

  • PDF