• 제목/요약/키워드: 신용평점 시스템

Search Result 7, Processing Time 0.016 seconds

A Study on Effects of Corporate Governance Information on Credit Financial Ratings (기업지배구조정보가 신용재무평점에 미치는 영향)

  • Kim, Dong-Young;Kim, Dong-Il;Seo, Byoung-Woo
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • If the watchdog role of good corporate governance, corporate executives and reduce agency costs and information asymmetries. Corporate governance score higher because enterprise internal control systems and financial reporting system is well equipped with the company management is enabled and corporate performance is higher because the high financial credit rating. Under these assumptions and hypotheses set up this study corporate governance (CGI) has been studied demonstrated how the financial impact on the credit rating (CFR). Findings,

    relevant corporate governance (CGI) and financial credit rating was found to significantly affect the positive (+), Regression coefficient code is expected code of positive (+), the value

    indicated by the value of all positive. The results of corporate governance (CGI) has showed excellent results, such as the more predictable will increase the credit score financial rating. The results of this study will have more CGI-credit financial rating the greater good. This study might be expected to provide a useful guide that corporate social responsibility, the company with a good governance and oversight systems enable to to get a higher credit rating in practice and research.

Dynamic Credit Scoring System (동적 개인신용평가시스템)

  • Kim, Dong-Wan;Baek, Seung-Won;Ju, Jung-Eun;Koo, Sang-Hoe
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.190-197
    • /
    • 2007
  • 외환위기 이후 우리나라 금융기관은 상대적으로 위험성이 높은 기업대출보다, 높은 수익성을 가지는 가계 대출에 관심을 기울이게 되었다. 가계대출이 증가함에 따라 개인신용평가의 중요성이 부각되고, 이에 많은 신용평가시스템이 개발되어 왔다. 하지만 기존의 신용평가시스템은 대출 신청 당시의 데이터 및 과거의 데이터를 가지고 개인의 신용을 평가하기 때문에, 미래 상황에 대한 예측은 고려하지 못한다. 시스템 다이나믹스는 시간의 흐름에 따른 각 요인의 변화를 살펴봄으로써 미래 상황에 대한 예측이 가능한 분석 방법이다. 이에 본 연구에서는 시스템 다이나믹스 방법론을 활용하여 개인 신용 상태에 대한 미래의 동태적인 변화를 예측하여, 그 결과를 반영한 신용평가모델을 개발하고자 한다. 이를 위하여, 먼저 신용평점 영향을 주는 변수들을 선정하고, 이 변수들 간의 인과관계를 밝혀낸 후, 인과관계를 토대로 분석 모델을 구축한 뒤, 컴퓨터 시뮬레이션을 실행함으로써, 대출 희망자의 미래의 신용상태 변화 모양을 예측해 본다. 이러한 시뮬레이션 결과를 신용평가에 반영하게 되면, 금융기관의 신용 대출의 위험을 줄이는 데 기여할 것으로 기대된다.

  • PDF

고객관리를 위한 새로운 스코어링 기법에 관한 고찰

  • 이군희;이형석;김창효;서정민
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.231-234
    • /
    • 2000
  • 본 연구는 오랜 시간에 거쳐 축적된 고객 데이터베이스를 활용하여 스코어링 방법을 적용할 수 있는 모델링의 개발에 목적이 있다. 기존의 전통적인 스코어링 방법은 인구 통계학적인 변수나 거래 관련 횡단면적인 자료를 이용하여 우량고객과 불량고객을 구분하는 판별분석의 형태가 대부분이다. 하지만 과거 고객에 대한 실적 자료가 시계열 형태를 이루며 존재하기 때문에 이에 대한 적절한 동태적 모형을 적용은 자연스러운 확장이라고 볼 수 있다. 본 연구에서 제안하는 모형은 고객들의 실적관련 시계열 자료를 GARCH 모형에 적합하여 미래의 실적 예측과 이에 대한 표준편차를 예측하여 하위 $10\%$에 해당하는 실적 예측치를 스코어링으로 하는 새로운 방법을 소개하고자 한다. 이 경우 스코어 값이 부호를 가지게 되므로 우량고객을 구분함과 동시에 큰 음수 값을 조사하여 위험 평점도 함께 측정할 수 있어서 실무 측면에서 유용하리라고 본다.

  • PDF

Consumer Credit Scoring Model with Two-Stage Mathematical Programming (통합 수리계획법을 이용한 개인신용평가모형)

  • Lee, Sung-Wook;Roh, Tae-Hyup
    • The Journal of Information Systems
    • /
    • v.16 no.1
    • /
    • pp.1-21
    • /
    • 2007
  • 신용평점을 위한 부도예측의 분류 문제를 다루는데 있어서 통계적 판별분석 및 인공신경망 및 유전자알고리즘 등을 이용한 데이터 마이닝의 방법들이 일반적으로 고려되어왔다. 이 연구에서는 수리계획법을 응용하여 classification gap을 고려한 이단계 수리계획 접근방법을 신용평가에 적용하는 방법론을 제안하여 수리계획법을 통한 신용평가모형 구축의 가능성을 제시한다. 1단계에서는 선형계획법을 이용해서 대출 신청자에게 대출을 허가할 것 인지의 여부를 결정하게 되는 대출 심사 filtering으로의 적용단계이고, 2단계에서는 정수계획법을 이용하여 오분류 비용이 최소가 되도록 하는 판별점수를 찾는 과정으로 모형을 구성한다. 개인 대출 신청자의 데이터(German Credit Data)에 대하여 피셔의 선형 판별함수, 로지스틱 회귀모형 및 기존의 수리계획 기법들과의 비교를 통해서 제안된 모델의 성능을 평가한다. 이단계 수리계획 접근법의 평가 결과를 통하여 신용평가모형에의 적용가능성을 기존 통계적인 접근방법 및 수리계획 접근법과 비교하여 제시하고 있다.

  • PDF

A Study on the Effective Combining Technology and Credit Appraisal Information in the Innovation Financing Market (기술금융시장에서의 신뢰성있는 기술평가 정보와 신용평가 정보의 최적화 결합에 관한 연구)

  • Lee, Jae-Sik;Kim, Jae-jin
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.199-208
    • /
    • 2017
  • This study investigates the components and rating system of reliable technology credit information for a technology finance donor who is a consumer of the information and aims to create an effective and optimal technology credit appraisal system to enlarge technology finance supply. Firstly, we calculate the optimal TCAR which becomes the maximum AUROC through the combination of ratio change, verify the substitution possibility between TAR and CR through the existing CR and system gap simulation, and propose a rating system by which financial institutes can utilize the TCAR as a credit rating. As a result, 70% : 30% is the most suitable as the weighted combination ratio of credit rating : technology rating. As a result of this study, we confirmed the possibility that the technical credit rating information could be substituted by the credit rating or the technology appraisal rating. Furthermore, it also suggests that sophisticated risk management is possible through using technology credit rating that are combined with credit and technology appraisal rating.

금융상품 만족도에 영향을 미치는 요인 -온라인 금융상품 비교/추천 플랫폼을 중심으로-

  • Hwang, Chang-Hui
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2017.04a
    • /
    • pp.52-52
    • /
    • 2017
  • 글로벌 금융위기 이후 다양한 형태로 등장한 금융상품과 ICT의 결합은 그 동안 생각하지 못한 방식으로 전 세계에 다양한 수요를 충족시키면서 폭발적으로 성장했다. 하지만 IT강국이라고 자부하는 대한민국은 다양한 규제와 시스템의 복잡성 때문에 은행상품이 온라인에서 거래되는 것은 아직까지 익숙하지 않다. 다행히 이러한 규제가 조금씩 완화되어 가면서 2016년은 모바일 송금, 금융상품 추천 플랫폼 등 비 금융업체 주도의 금융시장 온라인화가 소극적으로 이루어지는 과도기로 볼 수 있다. 이러한 시점에서 기존 오프라인 채널이 아닌 온라인 채널을 통해 금융상품을 구매하거나 가입하는 고객의 만족요인에 대해 연구하는 것은 향후 폭발적으로 증가할 수요에 앞서 연구하고, 현상을 주도할 기업에서도 소비자의 만족요인을 미리 파악한다는 점에서 시기적으로 적절하다. 해당 연구는 신용대출, 정기예금, 전세대출, 주택담보대출, 정기적금, 그리고 P2P투자 상품 별 만족도에 영향을 미치는 요인과 영향력을 SERVPERF 모델을 이용하여 분석한 뒤, 회귀분석과 텍스트간의 공동 출현단어에 대해 파이선을 통해 메트릭스를 형성하고, 사회연결망 분석으로 네트워크 중심성을 분석하여 단어간의 관계를 살펴보았다. 해당 연구는 국내 최초 온라인 금융상품 비교 추천 플랫폼인 "Finda"의 리뷰/평점데이터를 이용하였다.

  • PDF

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.