• Title/Summary/Keyword: 신소재의 적용

Search Result 629, Processing Time 0.023 seconds

Recent Research Trend in Nanocomposite Hydrogel Actuators (나노복합 하이드로겔 액추에이터의 연구동향)

  • Chung, Taehun;Han, Im Kyung;Kim, Youn Soo
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.40-50
    • /
    • 2020
  • 소프트 로봇의 수요와 관심이 증가함에 따라 생체 모방형 액추에이터 연구가 큰 관심을 받고 있다. 액추에이터란 외부 에너지를 기계적인 동작으로 변환하는 장치이며, 재료 자체가 유연하여 부드러운 움직임을 재현할 수 있는 소프트 액추에이터의 연구가 활발히 진행되고 있다. 고분자 연성 재료 중에 하나인 하이드로겔은 90% 이상이 물로 구성되어 있기 때문에 생체 친화적이면서 동시에 환경 친화적인 재료이며 이를 기반으로 한 액추에이터 연구가 새로이 각광받고 있다. 최근에는 하이드로겔 액추에이터의 성능 향상을 위해 나노재료를 하이드로겔에 첨가하는 연구가 진행되고 있으며, 나노재료가 갖는 고유의 특성을 활용함으로써 하이드로겔 액추에이터의 자극 감응성 향상, 변형 방향의 제어, 높은 변형 효율 그리고 기계적 물성 증가가 보고되고 있다. 이는 헬스케어를 위한 웨어러블 장치, 재활을 목적으로 한 인공 근육 등에 적용이 가능하다. 본 기고문에서는 자극 감응성 고분자와 나노재료를 이용한 하이드로겔 액추에이터 연구에 대해 자극(전기장, 빛, 열, 자기장)의 종류에 따라 분류하여 소개하고, 합성 전략 및 구동 원리에 대해 간략하게 설명하고자 한다.

Corrosion Protective Method Applicable to Air Vent Connected with a Heat Transport Pipe (열수송관에 연결된 에어벤트에 적용 가능한 부식 방지 방안)

  • Min Ji Song;Gahyun Choi;Woo Cheol Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study aimed to elucidate causes of corrosion of heat transport pipes and air vents installed under a manhole of heat transport facilities and suggest effective anticorrosive measures by applying paints or adhesive tapes. It was found that air vent corrosion was attributed to corrosion under insulation caused by the inflow of water and the enrichment of chloride ions. The infiltrated water caused a hydrolysis of polyurethane foam (PUF) insulation by concentrating chloride ions at the interface between a pipe and the PUF. As insulator deteriorated, more chloride ions were eluted as confirmed by ion chromatograph (IC) analysis. As an effective method to prevent air vent corrosion, different types of paints and adhesive tapes with higher corrosion resistance on chloride ions were applied and environmental resistance tests were performed with those samples. Based on environmental test results of samples exposed to 10% HCl solution, it was revealed that a wax tape was the most adequate from a viewpoint of stability at operating condition, environmental resistance, surface treatment, and field applicability.

안티모니 셀레나이드 태양전지의 연구 개발 동향: 에너지 밴드 정렬 최적화

  • ;;Wang Yazi
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.9 no.2
    • /
    • pp.18-28
    • /
    • 2023
  • 지구상에 풍부하며 저독성 소재인 안티모니 셀레나이드(Sb2Se3)는 재료가 갖는 우수한 광전자적 특성과 장기 내구성으로 차세대 태양전지 소자로 크게 주목 받고 있다. 또한, 비교적 짧은 연구기간 동안 빠른 성장 속도를 보여줬으며, 2014년 2.26%에서 8년의 연구기간 동안 약 5배인 2022년 10.57%를 달성하였다. 하지만, 여전히 기존의 칼코지나이드계 박막 태양전지인 CdTe(22.1%) 및 Cu(In,Ga)Se2(23.35%)가 달성한 효율에 비해 낮은 변환 효율을 보이고 있으며, 이는 계면에서 발생하는 캐리어 재결합으로 인한 개방전압 손실 문제가 주 원인으로 대두되고 있다. 따라서, Sb2Se3 광 흡수층에 인접한 전자 및 정공 수송층 사이에 적절한 밴드 정렬을 구축하여 캐리어 재결합 손실을 줄이는 것이 고효율 Sb2Se3 태양전지를 구현하기 위한 핵심 전략 중 하나이다. 본 원고에서는 Sb2Se3 광 흡수층의 기본적인 특성과 Sb2Se3 태양전지의 최근 연구 성과에 대해 간략하게 설명하고자 하며, 특히 전자 및 정공 수송층 적용을 통한 에너지 밴드 정렬 최적화에 관련된 내용을 중점적으로 소개하고자 한다. 또한, Sb2Se3 박막 태양전지 성능의 병목 현상을 극복하기 위한 잠재적인 연구 방향에 대해서도 논하고자 한다.

  • PDF

Application Evaluation of Countermeasure Method using Analysis of Failure Causes for Reinforced Slope (보강된 비탈면의 파괴원인 분석 및 대책공법의 적용성 평가)

  • Han, Jung-Geun;Hong, Ki-Kwon;Lee, Jong-Young;Jung, Sun-Kuk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • This paper described that the failure causes of reinforced slope are analyzed based on the effect of geological and rainfall. The analysis result confirmed that the rainfall has effects on the stability of reinforced slope. Therefore, it was applied to the dewatering method using collector well for slope stabilized, and then the analysis of seepage and slope stability were conducted on slope with the applied method. The results of seepage analysis are corresponded with failure cause by rainfall and the results of slope stability, which is applied to dewatering method, are satisfied with safety factor criterion. Therefore, it confirmed that the dewatering method using collector could be possible to apply in field and reasonable method for slope stabilized during heavy rainfall.

Restoration of Membrane Performance for Damaged Reverse Osmosis Membranes through in-situ Healing (손상된 역삼투막의 in-situ 힐링을 통한 막 성능 복원)

  • Yun, Won Seob;Rhim, Ji Won;Cho, Young Ju
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.96-104
    • /
    • 2019
  • The purpose of this paper is whether or not the in-situ restoration of the reverse osmosis (RO) membranes which its membrane function is lost is possible. The damaged RO membranes are double coated through the salting-out method by the poly(styrene sulfonic acid) sodium salt as the cationic exchange polymer and the polyethyleneimine as the anionic exchange polymer and also conducted the opposite order of the coating materials. And according to the concentration, time and ionic strength, the flux and rejection are measured for the coated membranes. Then the best coating condition is to apply for the RO membrane module of the household water purifier to know the possibility of the in-situ restoration for the commercial module. When the condition of the PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) is applied, the rejection was enhance from 69% for the damaged module to 86% (90% for the pristine module).

Characterization of Lattice Thermal Conductivity in Semiconducting Materials (반도체 재료의 격자열전도도 분석)

  • Lim, Jong-Chan;Yang, Heesun;Kim, Hyun-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.61-65
    • /
    • 2020
  • Suppressing lattice thermal conductivity of thermoelectric materials is one of the most popular approach to improve their thermoelectric performance. However, accurate characterization of suppressed lattice thermal conductivity is challenging as it can only be acquired by subtracting other contributions to thermal conductivity from the total thermal conductivity. Here we explain that electronic thermal conductivity (for all materials) and bipolar thermal conductivity (for narrow band gap materials) need to be determined accurately first to characterize the lattice thermal conductivity accurately. Methods to calculate Lorenz number for electronic thermal conductivity (via single parabolic model and using a simple equation) and bipolar thermal conductivity (via two-band model) are introduced. Accurate characterization of the lattice thermal conductivity provides a powerful tool to accurately evaluate effect of different defect engineering strategies.

A Study on the Characteristics of a Quantum Dots Light-Emitting Diodes Using a Mixed Layer of Quantum Dots and Hole Transport Materials (양자점과 정공 수송 물질의 혼합층을 사용한 양자점 전계발광 소자의 특성 연구)

  • Yoon, Changgi;Oh, Seongkeun;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.69-72
    • /
    • 2021
  • Various studies for QLEDs using inkjet printing has been actively conducted. Multilayers in QLEDs need an orthogonal process inevitably using different solvents and it makes the inkjet printing process more difficult and expensive. Therefore, coating two layers in a single process can reduce the fabrication step, resulting in the process time. In this study, we fabricated QLEDs of standard structure using a mixture of emission layer and hole transport layer. The mixed layer was fabricated by dissolving TFB and QDs in chlorobenzene, and the maximum luminance of the device was 45,850 cd/m2. It shows the bright future of the electroluminescence devices applied with inkjet printing process.

Design and Construction of Cellular Foundation Mattress as Foundations of Building Structures (건축구조물 기초로서 셀룰러 기초 매트리스의 설계 및 시공)

  • Jeong Young Lee;Jong Gon Ko;Nguyen Ngoc Son;Jae Hak Park;Doo Kie Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.25-37
    • /
    • 2023
  • Cellular Foundation Mattress made of new materials such as high density polyethylene, are not currently use for the foundation of small and medium-sized buildings in Korea. Therefore, they need to be developed and verified based on domestic ground and field conditions. This study presents the basic design and construction method of Cellular Foundation Mattress. Since the foundation reinforcement effect of Cellular Foundation Mattress should be evaluated and verified for soft ground, a performance comparison evaluation was conducted using the Soilbag method, which is commonly used for the foundation of small and medium-sized buildings in Korea. After the mattress reinforcement, the settlement amount decreased by 38.4% compared to the original ground and the bearing capacity increased by 159%, confirming the same ground reinforcement effect and ground stability as the Soilbag method.

Synthesis and Characterization of Ion Exchange Particles for Application of Anion Exchange Membrane (음이온교환막 적용을 위한 이온교환입자의 합성 및 특성평가)

  • Dong Jun Lee;Kwang Seop Im;Ka Yeon Ryu;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.137-147
    • /
    • 2023
  • In this study, Br-PPO was developed by applying additive organic particles through a suspension polymerization synthesis method. The anion exchange membrane fuel cell system performance was evaluated using it to an anion exchange membrane. To improve the performance, organic ion exchange particles were prepared and added to the anion exchange membrane. Chemical structure analysis and synthesis were determined through FT-IR and NMR, and tensile strength and thermal stability were measured through TGA and UTM to determine whether it could be driven. Before the anion exchange membrane fuel cell test, the performance was evaluated by measuring the ion conductivity and ion exchange capacity. Finally, the Br-PPO-TMA-SDV (0.7%) anion exchange membrane with excellent ion conductivity and ion exchange capacity was introduced into the fuel cell system. Its performance was compared with FAA-3-50, a commercial membrane, to determine whether it could be introduced into a fuel cell system.