• Title/Summary/Keyword: 신소재의 적용

Search Result 628, Processing Time 0.026 seconds

Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application - (강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 -)

  • Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The deformation behavior of the excavated behind ground due to the displacement shape of retention walls is predicted by numerical analysis, which can be performed using the artificial displacement method with elasto-plastic constitutive model. The displacement shape of the behind ground around the retention wall is similar to the displacement shape of the retention wall. However, far from the retention wall, it changes to the displacement shape of cantilever. The deformation (the settlement, the lateral movement) of the excavated behind ground can be decreased by restraining the upper displacement of the retention wall. The displacement shape of the retention wall due to excavation affects on the plastic failure zone and decreasing zone of stability of the excavated behind ground.

  • PDF

A Study of Correlation between SPT N-value and Exerted Electrical Energy Required for Ground Drilling II : Application Study (Field Pilot Test) (지반굴착에 소요되는 전기에너지와 표준관입시험 N값과의 상관관계 연구 II : 적용성 평가(현장시험시공))

  • Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.55-62
    • /
    • 2012
  • In this application study, field pilot tests were performed to evaluate the validity of a proposed formula between the exerted electrical energy and SPT N-value based on the result of the basic study. Measurement sensors and recording system were developed to obtain exerted motor current and drilling depth in a field. By using the correlation formula proposed in the basic study, the measured motor current and boring speed were applied to predict SPT N-value and the predicted N-values were compared to SPT N-value of site exploration. From the comparisons it is verified that the exerted electrical energy to bore ground might be used to predict SPT N-value and pile tip location.

자동차용 고온금속재료 연구개발

  • Kim, Yoon-Jun;Lee, Yong-Tae
    • 기계와재료
    • /
    • v.22 no.3
    • /
    • pp.96-109
    • /
    • 2010
  • 자동차는 다양한 형상과 기능을 가진 부품소재의 집합체라 할 수 있다. 자동차의 고출력화에 의한 연비향상과 각국의 환경규제 강화 요건을 충족시키기 위해 자동차 엔진의 작동온도와 이에 따른 배기가스의 온도가 꾸준히 높아지는 추세이다. 따라서 고온재료의 선택과 사용이 보다 중요해 지고 있다. 자동차에 사용되는 고온 부품은 설계사양에 맞추어 그리고 경제적인 측면을 고려하여 내열재료를 사용하는 방법과 표면처리를 하는 두 가지 방법이 주로 채택되고 있다. 내열재료를 사용하는 대표적인 부품은 엔진을 구성하는 부품과 연소실로부터 나오는 고온 고압의 배기가스가 이동하는 배기계 부품이다. 엔진을 구성하는 부품 중에는 냉각수에 의해 온도가 제어되는 부분은 경제적인 소재가 사용되나 밸브와 같은 부품은 고온재료가 채용된다. 가장 높은 온도에서 사용되는 배기계 부품에는 경제성이 감안되면서도 높은 열적, 기계적 안정성이 동시에 요구되고 있다. 전통적으로 배기부품에는 구상흑연주철이 널리 사용되어 왔고 현재에도 원가 측면의 강점을 이용해 대부분의 차량에 적용되고 있으나 일부 고출력, 고배기량 엔진의 경우에는 주철의 한계온도 이상의 배기온도가 요구되어 스테인리스 강을 도입하고 있다. 또한 내열 타이타늄 합금, 금속간화합물과 같은 고온재료가 개발됨에 따라 고가의 차종에는 신재료가 이들 부품으로 채용되고 있다. 이 글에서는 배기계 부품의 설계적인 요소에 의한 열적, 기계적 측면의 내구 특성을 살펴보고, 이들 부품에 보편적으로 적용되는 고온 금속재료의 종류 및 기계적 특성을 소개하였다. 아울러 미래의 환경친화적 자동차용 고온 부품을 개발하기 위하여 연구되고 있는 Super Si+MO, 스테인리스 강, TiAl, 고온 타이타늄 합금 등과 같은 자동차 내열 부품으로 사용되는 신소재의 연구개발 동향에 관하여 기술하였다.

  • PDF

A New Calibration Equation for Predicting Water Contents With TDR (TDR의 함수비 예측을 위한 새로운 보정방정식)

  • Song, Minwoo;Kim, Daehyeon;Choi, Chanyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • The objective of the study is to verify a new calibration equation of dry density and water contents with TDR. Since the traditional calibration equation was proposed, some research to develop a new calibration equation has been conducted by several researchers. As traditional calibration equation is difficult to be applied for loose soil and fine-grained soil at high water contents, this study developed a new calibration equation. Thus, this study introduces a new calibration equation and its applicability by comparing TDR test results with conventional test results. Based on the analyses, the calibration equation for water content has large error. A new calibration equation was proposed and it showed more than 95% accuracy for estimating water content of soil.

Internal Stability of Timber Framed Earth Retaining Wall (목재옹벽의 내적안정 평가에 관한 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2011
  • This paper introduces a recently developed thinning-out timber framed earth retaining wall system. Timber framed retaining walls are usually designed by using design code of gravity type retaining wall but internal stability of timber framed earth retaining walls is often neglected. In this study, it is recommended to use the design code for segmental retaining walls by National Concrete Masonry Association (NCMA, 1997) to check internal stability of timber framed earth retaining wall. Based on the several shear test results for 3 types of timber frames, a simple design chart including internal stability is suggested.

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

Economic Analysis Considering Traffic Characteristics for the Glass Fiber Sheet Reinforced Asphalt Pavement (교통 특성에 따른 유리섬유 시트 보강 아스팔트포장의 경제성 분석)

  • Cho, Sam-Deok;Lee, Dae-Young;Han, Sang-Ky;Kim, Nam-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2002
  • Even though a lot of laboratory and field tests for asphalt pavements using geosynthetics have been conducted recently, any rational and systematic analysis for the economic efficiency of the asphalt pavement systems reinforced by using geosynthetics has not been proposed yet. In this study, the economic analysis considering the traffic characteristics for the glass fiber sheet reinforced asphalt pavement was performed using the Life Cycle Cost Analysis(LCCA) which is commonly used for the economic analysis technique. The economic efficiency for the glass fiber sheet reinforcement and the traffic characteristics was examined by applying the test results from the literature review to the economic analysis model.

  • PDF

A Study on Applicability of Soil Strength for Surface Treatment (표층처리를 위한 현장의 강도적용에 관한 연구)

  • Yang, Tae-Seon;Kim, Byeong-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.45-52
    • /
    • 2005
  • Most marine structures are constructed on very soft soil, soil improvements are needed for the area of road, buildings. In this paper, some considerations of several case studies on soil placement method after geotextile placement, known as surface treatment, are done. Considerations of strength applicability on the advanced construction method of sand and soil placement are proposed in this paper. Typical tensile strength of geotextile used in the surface soil stabilization method is 15t/m, and thickness of sand and soil placement between 1.6m and 3.1m. Undrained shear strength of soft clay layer ranges $0.2{\sim}1.2t/m^2$. In order to minimize the difficulties which include soil disturbance, soft soil gush and overturn of vertical drain installation rig more studies are needed.

  • PDF

A Study on the Behavioral Characteristics of a Circular Foundation Dominated by Pull-Out Load through Field Test (현장시험을 통한 인발하중이 지배적인 원형기초의 거동 특성 연구)

  • Shin, Kyung-Ha;Lee, Seung-Ho;Lee, Dong-hyuk;Park, Du-hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.53-62
    • /
    • 2021
  • For the rational application of LRFD, which is actively applied in Korea, for the study of the pull-out load and the horizontal load, which are insufficient examples, a circular foundation based on the transmission tower foundation, which is a socially important structure, through field tests in single and mixed layer. Factors that can affect the design were studied by analyzing the resistance of each stratum to pull-out and horizontal loads.

Application of Stepped Isothermal Methods to Lifetime Prediction of Geogrids (SIM을 적용한 성토보강용 지오그리드의 수명예측)

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.3-6
    • /
    • 2005
  • The failure of geogrids can be defined as an excessive creep strain which causes the collapse of slopes and embankments. In this study, the lifetime of knitted polyester geogrids was predicted by using SIM(Stepped Isothermal Methods using TTS principal) and statistical data analysis techniques. The results indicate that the creep strain was 8.74, 8.79, 8.80% with 2.16~2.20% of CV% at 75, 100, 114 years, respectively and the creep strain reaches 9.3% after 100 years of usage at $27^{\circ}C$ which meets the required lifetime(creep strain less than 10% after 100 years of usage) in the fields. The SIM method is shown to be effective in reduction of uncertainty associated with inherent variability of multi-specimen tests and shorter test times than conventional TTS(Time-Temperature Superposition).

  • PDF