Proceedings of the Korea Society for Industrial Systems Conference
/
1998.03a
/
pp.113-117
/
1998
부품이나 조립품 또는 완제품의 개발단계에서의 신뢰성 수준을 정확하게 예측하느느 것은 쉬운 일이 아니며 이는 엔지니어들 사이에서 자주 논란이 되어온 문제이다. 본 연구의 목적은 제품개발의 초기단계에서 신뢰성을 예측할 수 있는 올바른 방법과 그것이 어떻게 사용되어지는지에 대하여 예시함으로서 엔지니어들의 신뢰성공학에 대한 이해도를 높이는데 있다. 본 논문에서 소개된 기술들은 실무자들에게 신뢰성예측 이론의 기초적인 원리를 이해하는데 유효한 자료가 될 것이다.
Proceedings of the Korean Reliability Society Conference
/
2000.04a
/
pp.135-143
/
2000
일반적으로 제어시스템은 독립된 기능을 갖는 전자제어모듈들로 구성되고, 제어시스템의 보수에 있어서 최소 교체단위가 전자제어모듈이기 때문에 제어시스템의 신뢰성을 평가하는 것은 전자제어모듈의 신뢰성을 평가하는 것으로부턴 출발한다. 전자모듈의 신뢰성을 평가할 때 주로 사용하는 평가척도는 MTBF이고, 제조업체에서는 일반적으로 MIL-HDBK-217의 수명예측방법을 이용하여 산출한 MTBF를 제시하고 있다. 하지만 현장의 구매자들은 물론 전자모듈을 개발하는 엔지니어도 MIL-HDBK-217 데이터를 이용한 계산만으로 산출한 MTBF가 실제 사용할 때와 큰 차이가 없는지 확인하기를 원한다. 본 논문에서는 이러한 요구에 따라서 MIL-HDBK-217의 수명예측 방법을 이용하여 예측한 수명을 가속수명시험을 통하여 보증하는 방법을 제시하고, 제시한 방법을 실제 국내에서 제작한 2종류의 전자제어모듈에 적용한 사례를 기술하였다. 국내에서 제작한 2종류의 전자제어모듈에 대하여 본 논문에서 제시한 보증시험방법에 따라서 시험한 결과 신뢰수준 60%에서 예측 수명을 보증할 수 있었고, 보증시험 후에 수명을 추정하기 위하여 추가적으로 장시간 시험하여 수명을 추정한 결과 추정된 수명이 MIL-HDBK-217을 이용하여 예측된 수명에 비하여 2.86∼3.40배길게 나타났다.
본 논문은 열차제어시스템의 고장률을 정량적으로 예측하고 입증하기 위한 방안을 제시한다. 고장률의 정량적 예측은 시스템 개발단계에서 하부시스템별 고장발생확률을 예측하여 목표 고장률과 비교하고, 고장률이 높은 하부시스템의 설계를 보완하기 위함이다. 시제품이 완성된 후에는 예측된 고장률의 입증을 위해 시운전을 통한 고장데이터를 분석하거나 신뢰성시험을 통해 고장률의 예측치를 입증한다. 본 논문에서 제시하는 열차제어시스템 고장률예측과 입증은 철도신호시스템 신뢰성, 가용성, 유지보수성, 안전성관련 규격인 IEC62278의 시스템 수명주기별 신뢰성활동을 근거로 하며, 전자부품으로 구성된 시스템고장률예측은 미국방부 전자부품 고장률예측 지침인 MIL-HDBK-217을 기준으로 사용하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.195-198
/
2002
고농도오존이 발생되는 원인과 환경적 요인의 상호관계를 모델링하기 위해 신경회로 망과 같은 지능제어 기법들이 많이 적용되어 왔다 분석과 모델링을 위해 유전자 알고리즘과 같은 최적화 방법을 적용하기도 하지만, 고농도 오존이 발생되는 메커니즘이 매우 복잡하고, 비선형적이며, 패턴파악이 어렵기 때문에 고농도 오존의 예측 모델링에는 여전히 문제점이 있다 따라서 본 논문에서는 신뢰수준과 신뢰구간을 이용하여 초농도 오존을 예측할 수 있는 모델링 방법을 서술하였다 예측값의 신뢰수준의 평가는 예측에 대한 실측값을 구하여 신뢰구간내의 데이터의 개수를 파악함으로써 신뢰성을 평가할 수 있다. 또한 이 테스트는 우리가 가지고 있지 않은 데이터에 대한 유효성을 평가하는데 적용될 수 있다 그리고 본 논문에서는 GMDH(Group Method of data handling)의 전형적인 알고리즘에 바탕을 두고 있는 DPNN(Dynamic Polynomial Neural Network)를 이용하여 예측 모델을 구성하였다. DPNN은 데이터 해석이 용이하고 비선형적인 동적 시스템 예측에 유용하게 적용될 수 있는 장점을 가지고 있다.
This paper proposes a methodology for creating a function based reliability prediction model. Although, there are various works for reliability prediction, one of the features of their research is that the research is based on hardware-centered reliability prediction. Reliability is often defined as the probability that a device will perform its intended function, under operating condition, for a specified period of time, there is a profound irony about reliability prediction problem. In this paper, we proposed four-phase modeling procedure for function-centered reliability prediction. The proposed modeling procedure consists of four models; 1) structure block model, 2) function block model, 3) device model, and 4) reliability prediction model. We performed function-centered reliability prediction for electronic ballast using the proposed modeling procedure and MIL-HDBK-217F which is the military handbook for reliability prediction of electronic equipment.
Predictions of settlements under preloading for the improvement of soft soil is a very important element of construction management. Due to the non uniformity, difficulty of estimating resonable soil properties, predictions of settlements and settlement velocities at the design stage seldom agree with the actual future settlements. To overcome this problem, the prediction methods based on the settlement observation of initial preloading stage such as hyperbolic method and Asaoka method have been employed frequently. However the estimating method for the reliability of these predictions at the time of prediction has not been suggested. In this study, comparisons of predicted settlements by hyperbolic met hed and observed settlements are explored through case studies. And a stratagem of estimating reliability of settlement predictions by hyperbolic method is suggested as the result of investigation on the relationship between the initial observed time and error of settlement prediction by hyperbolic method.
발전소 수명연장의 필요성과 더불어 발전기 수명예측기법이 발전기 제작사를 중심으로 연구되어 왔으며 국내에도 수명예측과 관련기술들이 주로 일본의 영향을 받아 도입되어 발전소 현장에 활용되고 있고 평가의 신뢰성을 높이기 위해 노력하고 있다. 본 연구에서는 국내에 적용되고 있는 발전기 수명예측방법과 적용기준을 살펴보고 실제 발전소를 대상으로 수명평가한 사례중에서 평가결과의 신뢰성에 문제가 될 수 있는 몇가지 사례를 예시하고 분석하였다. 그 결과로 수명예측의 신뢰성을 높이기 위해서는 발전기의 냉각방식에 따라 수명평가 기준이 달리 적용되어야 한다는 것과, 최대부분방전량 측정오차를 줄여야 한다는 것, 고정자권선 단말부 흡습에 대한 고려가 필요하다는 것 등을 제시하였다.
This paper explores neuro-fuzzy system in order to improve the software reliability predictability from failure data. We perform numerical simulations for actual 10 failure count and 4 failure time data sets from different software projects with the various number of rules. Comparative results for next-step prediction problem is presented to show the prediction ability of the neuro-fuzzy system. Experimental results show that neuro-fuzzy system is adapt well across different software projects. Also, performance of neuro-fuzzy system is favorably with the other well-known neural networks and statistical SRGMs.
Proceedings of the Korean Association for Survey Research Conference
/
2000.06a
/
pp.15-34
/
2000
Since the results of the election forecasting survey that was executed jointly by T.V. stations and survey research companies in the 16th Korea General Election(April 13, 2000) had many errors, the reliability of the election forecasting survey was greatly damaged. Therefore, in order to recover the reliability and to increase the accuracy of the election forecasting survey I the future, we figure out the sources of the survey\\`s errors and suggest methods of reducing them through deeply analyzing the forecasting data from many angles. In addition, we discuss some problems and an improvable direction on exit poll executed for the first time.
Since the results of the election forcasting survey that was executed jointly by T.V. stations and survey research companies in the 16th Korea General Election(April 13, 2000) had many errors, the reliability of the election forecating survey was greatly damaged. Therefore, in order to recover the reliability and to increase the accuracy of the election forecasting survey in the future, we figure out the sources of the survey's errors and suggest methods of reducing them through deeply analyzing the forecasting data from many angles. In addition, we discuss some problems and an improvable direction on exit poll executed for the first time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.