• Title/Summary/Keyword: 신뢰성 공학

Search Result 2,460, Processing Time 0.026 seconds

Probabilistic Optimization for Improving Soft Marine Ground using a Low Replacement Ratio (해상 연약지반의 저치환율 개량에 대한 확률론적 최적화)

  • Han, Sang-Hyun;Kim, Hong-Yeon;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.485-495
    • /
    • 2016
  • To reinforce and improve the soft ground under a breakwater while using materials efficiently, the replacement ratio and leaving periods of surcharge load are optimized probabilistically. The results of Bayesian updating of the random variables using prior information decrease uncertainty by up to 39.8%, and using prior information with more samples results in a sharp decrease in uncertainty. Replacement ratios of 15%-40% are analyzed using First Order Reliability Method and Monte Carlo simulation to optimize the replacement ratio. The results show that replacement ratios of 20% and 25% are acceptable at the column jet grouting area and the granular compaction pile area, respectively. Life cycle costs are also compared to optimize the replacement ratios within allowable ranges. The results show that a range of 20%-30% is the most economical during the total life cycle. This means that initial construction cost, maintenance cost and failure loss cost are minimized during total life cycle. Probabilistic analysis for leaving periods of shows that three months acceptable. Design optimization with respect to life cycle cost is important to minimize maintenance costs and retain the performance of the structures for the required period. Therefore, more case studies that consider the maintenance costs of soil structures are necessary to establish relevant design codes.

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Evaluation Method of Portable Handheld U-healthcare Medical Devices (휴대형 유헬스케어 의료기기 평가방법)

  • Nam, Myung-Hyun;Kim, Soo-Chan;Kim, Jang-Su;Lee, Kap-No;Kim, San;Cha, Ji-Hun;Hur, Chan-Hoi;Park, Ki-Jung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.55-62
    • /
    • 2012
  • Convergence of information technology (IT) and medical devices enables people to measure health-related information ubiquitously, such as measuring blood glucose at home and checking cardiac signals during exercise and it allows us to access to medical care anywhere and anytime. Nowadays, the market for U-healthcare medical devices is growing rapidly, but guidelines for the evaluation of safety and effectiveness of such devices remain to be formulated. We performed a study on the development of safety and performance evaluation method for portable, hand-held, U-healthcare medical devices. We reviewed current guidelines and standards for home-health devices from the Korea Food and Drug Administration (KFDA) and related international committees such as the ISO/IEEE and CE. We summarized the test methods and items for the evaluation of safety and performance related to U-healthcare medical devices from the above guidelines and standards. We defined requirements for a U-healthcare medical device to demonstrate good performance. In conclusion, we propose an evaluation method for U-healthcare medical devices, which will help improve the safety and reliability of these devices.

Conformity Assessment of Color Measurement Methods (색도 측정방법의 적합성 평가)

  • Jeong, Gwanjo;Jo, Bumsu;Song, Mahnshik;Park, Hyeon;Lee, Jonggyu;Choi, Youngjune
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.442-448
    • /
    • 2013
  • There are two approaches in measuring colors (or chromaticity) in water, i.e., visual comparison method and spectrophotometric method. The color of sample was determined by comparing with that of platinum-cobalt standard solution in the visual comparison method. Single or multiple wavelengths are used for the spectrophotometric method. As the accuracy and precision of visual comparison method depend on the eye sight of the analyzer, the results are not so reliable and representative. In addition, it is hard to measure chromaticity less than 5 TCU. Single wavelength approach in spectrophotometric method, can be applied for groundwater or surface water with natural organic matter (i.e., humic substances) while it's hard to measure the color of wastewater which includes anthropogenic chemical compounds. The measurements with multiple wavelengths approach resulted in reliable data regardless of the source of sample water, i.e., surface water and wastewater. As dozens of measurements and complicated calculations for one sample were required for the multiple wavelengths approach, the approach could not be applied for field measurement. In the present study, the authors tested efficient method which could measure the color of water sample accurately and precisely regardless of the source of water. With the colorimeter with multiple wavelengths and calculation program, the colors of water samples could be measured within 3~4 seconds with accuracy and precision.

Use of the Risk Score for the Effective Management of Cut Slopes (효율적인 절토사면 관리를 위한 위험도 점수 활용에 관한 연구)

  • Kim, Jin-Hwan;Baek, Yong;Koo, Ho-Bon;Park, Keun-Bo
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.223-231
    • /
    • 2012
  • Many cut slopes are located near national highways, resulting in large annual damage to infrastructure from the collapse of cut slopes. Therefore, to effectively maintain cut slopes, high-risk slopes should be identified and monitored. In this paper, we evaluate the effectiveness of the management of cut slopes using the risk score calculated from cut-slope inventory data. The inventory survey, as a simple assessment of the characteristics of various slopes, was performed to collect basic data that could be obtained visually in the field for the management of cut slopes. This method is not a precise survey, and it was composed of the general status and characteristics of cut slopes, the inspector's assessment, and inventory data in order to estimate a risk score for each slope. In this paper, we calculated the risk score by investigating the present status of cut slopes adjacent to 10,461 national roads. In order to evaluate the effectiveness of using risk score data, we compared the score for stable slopes with those of failed cut slopes. Failed cut slopes occurred in sections with the highest risk score. The results show that risk score derived from the inventory survey of cut slopes are useful in the management of cut slopes with risk of failure and in monitoring large numbers of cut slopes.

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

A Novel QoS Provisoning Scheme Based on User Mobility Patterns in IP-based Next-Generation Mobile Networks (IP기반 차세대 모바일 네트워크에서 사용자 이동패턴에 기반한 QoS 보장기법)

  • Yang, Seungbo;Jeong, Jongpil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.25-38
    • /
    • 2013
  • Future wireless systems will be required to support the increasingly nomadic lifestyle of people. This support will be provided through the use of multiple overlaid networks which have very different characteristics. Moreover, these networks will be required to support the seamless delivery of today's popular desktop services, such as web browsing, interactive multimedia and video conferencing to the mobile devices. Thus one of the major challenges in the design of these mobile systems will be the provision of the quality of service (QoS) guarantees that the applications demand under this diverse networking infrastructure. We believe that it is necessary to use resource reservation and adaptation techniques to deliver these QoS guarantee to applications. However, reservation and pre-configuration in the entire service region is overly aggressive, and results in schemes that are extremely inefficient and unreliable. To overcome this, the mobility pattern of a user can be exploited. If the movement of a user is known, the reservation and configuration procedure can be limited to the regions of the network a user is likely to visit. Our proposed Proxy-UMP is not sensitive to increase of the search cost than other schemes and shows that the increasing rate of total cost is low as the SMR increases.

Assessment of Partial Safety Factors for Limit States Design of Foundations (한계상태설계법의 기초설계 적용을 위한 부분안전계수의 평가)

  • Kim Bum-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.77-89
    • /
    • 2004
  • While limit states design (LSD) is currently the standard structural design practice, it is relatively new in the geotechnical design. Adoption of LSD far geotechnical design is an international trend. In the present study, various LSD codes from the United States, Canada, and Europe were reviewed. A simple first-order-second-moment (FOSM) reliability analysis was performed to determine theoretically the ranges of load and resistance factor values for representative loads and foundation bearing capacity, respectively. In order for foundation design to be consistent with current structural design practice, it would be desirable to use the same loads, load factors and load combinations. The values of load factor, obtained from the FOSM analysis, were found to be generally consistent with those given in the codes, whereas the values of resistance factor indicated overall lower ranges due to high values of coefficient of variation used in the analysis. Since the degree of uncertainties included in bearing capacity of foundations varies with the methods used to estimate the bearing capacity, different values of resistance factor should be used fur different methods. For the purpose, continuous efforts are needed to be made first to accurately identify and quantify the uncertainties in the methods.

A Study on the Estimation of Stability of Fill Dam by Long-term Electrical Resistivity Monitoring (장주기 전기비저항 모니터링 기법을 이용한 필댐의 안정성 평가)

  • Kim, Gi-Ho;Lim, Heui-Dae;Ahn, Hee-Yoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.53-64
    • /
    • 2013
  • Resistivity monitoring is based on the fact that a change in the porosity leads to the changes in water content and fine particles, which alter the electrical resistivity. At every embankment dam, internal erosion always occurs as time passes. The internal erosion generally develops into piping over a long time by backward erosion and concentrated leak, and finally leads to dam failure. Resistivity is known to be very sensitive to the changes in porosity in embankment dams. Thus resistivity monitoring is a reasonable method to find out the leakage zone. However, resistivity is strongly influenced by seasonal variation of temperature, TDS of reservoir water and water level. In this paper. we first installed electrodes permanently at the center of the crest. The electrical resistivity monitoring data was acquired every 6 hours from Apr. 3, 2011 to July. 31, 2012. To analyze the characteristics of monitoring data, each resistivity data was calculated from up to 2,950 data sets. The result indicated a seasonal resistivity variation due to related temperature. Finally, a quantitative method to estimate porosities of the embankment dam from the resistivity monitoring data was analyzed. The applicability and reliability were verified and the importance of electrical resistivity monitoring for obtaining reliable result was emphasized.

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.