• Title/Summary/Keyword: 신뢰성기반 유지보수

Search Result 136, Processing Time 0.02 seconds

A Study on the Development of integrated Process Safety Management System based on Artificial Intelligence (AI) (인공지능(AI) 기반 통합 공정안전관리 시스템 개발에 관한 연구)

  • KyungHyun Lee;RackJune Baek;WooSu Kim;HeeJeong Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.403-409
    • /
    • 2024
  • In this paper, the guidelines for the design of an Artificial Intelligence(AI) based Integrated Process Safety Management(PSM) system to enhance workplace safety using data from process safety reports submitted by hazardous and risky facility operators in accordance with the Occupational Safety and Health Act is proposed. The system composed of the proposed guidelines is to be implemented separately by individual facility operators and specialized process safety management agencies for single or multiple workplaces. It is structured with key components and stages, including data collection and preprocessing, expansion and segmentation, labeling, and the construction of training datasets. It enables the collection of process operation data and change approval data from various processes, allowing potential fault prediction and maintenance planning through the analysis of all data generated in workplace operations, thereby supporting decision-making during process operation. Moreover, it offers utility and effectiveness in time and cost savings, detection and prediction of various risk factors, including human errors, and continuous model improvement through the use of accurate and reliable training data and specialized datasets. Through this approach, it becomes possible to enhance workplace safety and prevent accidents.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

Development of a Building Safety Grade Calculation DNN Model based on Exterior Inspection Status Evaluation Data (건축물 안전등급 산출을 위한 외관 조사 상태 평가 데이터 기반 DNN 모델 구축)

  • Lee, Jae-Min;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.665-676
    • /
    • 2021
  • As the number of deteriorated buildings increases, the importance of safety diagnosis and maintenance of buildings has been rising. Existing visual investigations and building safety diagnosis objectivity and reliability are poor due to their reliance on the subjective judgment of the examiner. Therefore, this study presented the limitations of the previously conducted appearance investigation and proposed 3D Point Cloud data to increase the accuracy of existing detailed inspection data. In addition, this study conducted a calculation of an objective building safety grade using a Deep-Neural Network(DNN) structure. The DNN structure is generated using the existing detailed inspection data and precise safety diagnosis data, and the safety grade is calculated after applying the state evaluation data obtained using a 3D Point Cloud model. This proposed process was applied to 10 deteriorated buildings through the case study, and achieved a time reduction of about 50% compared to a conventional manual safety diagnosis based on the same building area. Subsequently, in this study, the accuracy of the safety grade calculation process was verified by comparing the safety grade result value with the existing value, and a DNN with a high accuracy of about 90% was constructed. This is expected to improve economic feasibility in the future by increasing the reliability of calculated safety ratings of old buildings, saving money and time compared to existing technologies.

Air Quality Monitoring System Using NDIR-CO$_2$ Sensor for Underground Space based on Wireless Sensor Network (비분산적의선 CO$_2$센서를 이용한 무선 센서 네트워크 기반의 지하 공기질 모니터링 시스템)

  • Kwon, Jong-Won;Kim, Jo-Chun;Kim, Gyu-Sik;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.28-38
    • /
    • 2009
  • In this study, a remote air quality monitoring system for underground spaces was developed by using NDIR-based CO$_2$ sensor. And the remote monitoring system based on wireless sensor networks was installed practically on the subway station platform. More than 6.5 million citizens commutate everyday by the Seoul subway transportation that is the most typical public transportation. They concern about air quality with increasing interest on public health or many workers in subway stations or underground shopping centers. Recently, the Korean Ministry of Environment has operated the air quality monitoring system in some subway stations for testing phase. However, it showed many defects which are large-scale, high-cost and maintenance of precision sensors imported from abroad. Therefore this research includes the reliability test and a theoretical study about the inexpensive commercialized CO$_2$ sensor for reliable measurement of air quality which changes rapidly by the surrounding environments. And then we develop the wireless sensor nodes and the gateway applied for remote air quality monitoring. In addition, web server program was realized to manage air quality in the subway platform. This result will be valuable for a basic research for air quality management in underground spaces for future study.

Forward/Reverse Engineering Approaches of Java Source Code using JML (JML을 이용한 Java 원시 코드의 역공학/순공학적 접근)

  • 장근실;유철중;장옥배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.19-30
    • /
    • 2003
  • Based upon XML, a standard document format on the web, there have been many active studies on e-Commerce, wireless communication, multimedia technology and so forth. JML is an XML application suitable for understanding and reusing the source code written using JAVA for various purposes. And it is a DTD which can effectively express various information related to hierarchical class structures, class/method relationships and so on. This paper describes a tool which generates JML document by extracting a comment information from Java source code and information helpful for reusing and understanding by JML in terms of the reverse engineering and a tool which generates a skeleton code of Java application program from the document information included in the automatically or manually generated JML document in terms of the forward engineering. By using the result of this study, the information useful and necessary for understanding, analyzing or maintaining the source code can be easily acquired and the document of XML format makes it easy for developers and team members to share and to modify the information among them. And also, the Java skeleton coed generated form JML documents is a reliable robust code, which helps for developing a complete source code and reduces the cost and time of a project.

A study on vulnerability analysis and incident response methodology based on the penetration test of the power plant's main control systems (발전소 주제어시스템 모의해킹을 통한 취약점 분석 및 침해사고 대응기법 연구)

  • Ko, Ho-Jun;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.2
    • /
    • pp.295-310
    • /
    • 2014
  • DCS (Distributed Control System), the main control system of power plants, is an automated system for enhancing operational efficiency by monitoring, tuning and real-time operation. DCS is becoming more intelligent and open systems as Information technology are evolving. In addition, there are a large amount of investment to enable proactive facility management, maintenance and risk management through the predictive diagnostics. However, new upcoming weaponized malware, such as Stuxnet designed for disrupting industrial control system(ICS), become new threat to the main control system of the power plant. Even though these systems are not connected with any other outside network. The main control systems used in the power plant usually have been used for more than 10 years. Also, this system requires the extremely high availability (rapid recovery and low failure frequency). Therefore, installing updates including security patches is not easy. Even more, in some cases, installing security updates can break the warranty by the vendor's policy. If DCS is exposed a potential vulnerability, serious concerns are to be expected. In this paper, we conduct the penetration test by using NESSUS, a general-purpose vulnerability scanner under the simulated environment configured with the Ovation version 1.5. From this result, we suggest a log analysis method to detect the security infringement and react the incident effectively.