기계번역기는 1950년대 처음 등장하였고 2010년대 신경망번역시스템을 적용하면서 번역정확성에 비약적인 발전을 하였다. 하지만 아직도 복잡한 문장의 번역에는 어려움을 겪고 있으며 이것은 영어학습 도구로서 기계번역기를 이용하는데 불편함을 주었다. 따라서 본 연구는 고등학교 1학년 수준의 문장들 중 다양한 뜻과 품사를 가지고 있는 as가 포함된 문장들을 분석대상으로 기계번역기를 이용한 역번역실험을 통해서 영어학습 도구로서 기계번역기의 가용성을 분석했다. 분석도구로는 신경망번역시스템을 이용한 대표적인 기계번역기인 구글 번역기, 네이버 파파고, 마이크로소프트 번역기를 이용하였다. 연구결과 기계번역기 사용시 각 as용법에 따라서 가용성이 유의하게 다른 것을 확인하였고 그에 따라 각 문장에 쓰인 as용법을 기계번역기를 사용하여 학습할 시 가용성이 높은 용법, 보통인 용법, 낮은 용법으로 분류하였다. 선행연구와는 다르게 직접 학습도구로서 기계번역기를 분석했고 접속사 as의 용법의 가용성을 수치화 시킨 데 있어서 본 연구는 연구적 공헌점을 가진다.
글로벌 시대를 맞이하여 언어의 장벽을 해소하기 위하여 기계번역 연구들이 전 세계적으로 이루어지고 있다. 딥러닝의 등장으로 기존 규칙 및 통계기반 방법론에 비하여 눈에 띄는 성능향상을 이루어내고 있으며 많은 연구들이 이루어지고 있다. 인공신경망 기반 기계번역 모델을 만들 때 가장 중요한 요소는 병렬 말뭉치의 양과 질이다. 본 논문은 한-영 대용량의 말뭉치를 수집하고 병렬 말뭉치 필터링 기법을 적용하여 데이터의 양과 질을 충족시켰으며 한-영 기계번역 관련 객관적인 테스트셋인 Iwslt 16, Iwslt 17을 기준으로 기존 한-영 기계번역 관련 연구 중 가장 좋은 성능을 보였다.
인공신경망 기반 기계번역(Neural Machine Translation, NMT)이란 딥러닝(Deep learning)을 이용하여 출발 언어의 문장을 도착 언어 문장으로 번역해주는 시스템을 일컫는다. NMT는 종단간 학습(end-to-end learning)을 이용하여 기존 기계번역 방법론의 성능을 앞지르며 기계번역의 주요 방법론으로 자리잡게 됐다. 이러한 발전에도 불구하고 여전히 개체(entity), 또는 전문 용어(terminological expressions)의 번역은 미해결 과제로 남아있다. 개체나 전문 용어는 대부분 명사로 구성되는데 문장 내 명사는 주체, 객체 등의 역할을 하는 중요한 요소이므로 이들의 정확한 번역이 문장 전체의 번역 성능 향상으로 이어질 수 있다. 따라서 본 논문에서는 지식그래프(Knowledge Graph)를 이용하여 심볼릭 지식을 NMT와 결합한 뉴럴심볼릭 방법론을 제안한다. 또한 지식그래프를 활용하여 NMT의 성능을 높인 선행 연구 방법론을 한영 기계번역에 이용할 수 있도록 구조를 설계한다.
기계 학습의 발전은 인간만이 할 수 있었던 섬세한 작업들을 기계가 할 수 있도록 이끌었고, 이에 따라 많은 기업체들은 기계 학습 기반의 번역기를 출시하였다. 현재 상용화된 번역기들은 우수한 성능을 보이지만 숫자 번역에서 문제가 발생하는 것을 발견했다. 번역기들은번역할문장에 큰숫자가 있을경우종종숫자를잘못번역하며, 같은문장에서숫자만바꿔번역할 때문장의구조를 완전히바꾸어 번역하기도 한다. 이러한 문제점은오번역의 가능성을 높이기 때문에해결해야 될 사안으로여겨진다. 본 논문에서는 Bidirectional RNN (Recurrent Neural Network), LSTM (Long Short Term Memory networks), Attention mechanism을 적용한 Neural Machine Translation 모델을 사용하여 데이터 클렌징, 사전 크기 변경을 통한 모델 최적화를 진행 하였고, 최적화된 모델에 숫자 기호화 알고리즘을 적용하여 상기 문제점을 해결하는 번역 시스템을 구현하였다. 본논문은 데이터 클렌징 방법과 사전 크기 변경, 그리고 숫자 기호화 알고리즘에 대해 서술하였으며, BLEU score (Bilingual Evaluation Understudy score) 를 이용하여 각 모델의 성능을 비교하였다.
인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.
기계번역이란 소스문장(Source Sentence)을 타겟문장(Target Sentence)으로 컴퓨터가 번역하는 시스템을 의미한다. 기계번역에는 다양한 하위분야가 존재하며 APE(Automatic Post Editing)이란 기계번역 시스템의 결과물을 교정하여 더 나은 번역문을 만들어내는 기계번역의 하위분야이다. 즉 기계번역 시스템이 생성한 번역문에 포함되어 있는 오류를 수정하여 교정문을 만드는 과정을 의미한다. 기계번역 모델을 변경하는 것이 아닌 기계번역 시스템의 결과 문장을 교정하여 번역품질을 높이는 연구분야이다. 2015년부터 WMT 공동 캠페인 과제로 선정되었으며 성능 평가는 TER(Translation Error Rate)을 이용한다. 이로 인해 최근 APE에 모델에 대한 다양한 연구들이 발표되고 있으며 이에 본 논문은 APE 분야의 최신 동향에 대해서 다루게 된다.
딥러닝을 이용한 Neural Machine Translation(NMT)의 등장으로 기계번역 분야에서 기존의 규칙 기반,통계기반 방식을 압도하는 좋은 성능을 보이고 있다. 본 논문은 기계번역 모델도 중요하지만 무엇보다 중요한 것은 고품질의 학습데이터를 구성하는 일과 전처리라고 판단하여 이에 관련된 다양한 실험을 진행하였다. 인공신경망 기계번역 시스템의 학습데이터 즉 병렬 코퍼스를 구축할 때 양질의 데이터를 확보하는 것이 무엇보다 중요하다. 그러나 양질의 데이터를 구하는 일은 저작권 확보의 문제, 병렬 말뭉치 구축의 어려움, 노이즈 등을 이유로 쉽지 않은 상황이다. 본 논문은 고품질의 학습데이터를 구축하기 위하여 병렬 코퍼스 필터링 기법을 제시한다. 병렬 코퍼스 필터링이란 정제와 다르게 학습 데이터에 부합하지 않다고 판단되며 소스, 타겟 쌍을 함께 삭제 시켜 버린다. 또한 기계번역에서 무엇보다 중요한 단계는 바로 Subword Tokenization 단계이다. 본 논문은 다양한 실험을 통하여 한-영 기계번역에서 가장 높은 성능을 보이는 Subword Tokenization 방법론을 제시한다. 오픈 된 한-영 병렬 말뭉치로 실험을 진행한 결과 병렬 코퍼스 필터링을 진행한 데이터로 만든 모델이 더 좋은 BLEU 점수를 보였으며 본 논문에서 제안하는 형태소 분석 단위 분리를 진행 후 Unigram이 반영된 SentencePiece 모델로 Subword Tokenization를 진행 하였을 시 가장 좋은 성능을 보였다.
딥러닝을 이용한 Sequence to Sequence 모델의 등장과 Multi head Attention을 이용한 Transformer의 등장으로 기계번역에 많은 발전이 있었다. Transformer와 같은 성능이 좋은 모델들은 대량의 병렬 코퍼스를 가지고 학습을 진행하였는데 대량의 병렬 코퍼스를 구축하는 것은 시간과 비용이 많이 드는 작업이다. 이러한 단점을 극복하기 위하여 합성 코퍼스를 만드는 기법들이 연구되고 있으며 대표적으로 Back Translation 기법이 존재한다. Back Translation을 이용할 시 단일 언어 데이터를 가상 병렬 데이터로 변환하여 학습데이터의 양을 증가 시킨다. 즉 말뭉치 확장기법의 일종이다. 본 논문은 Back Translation 뿐만 아니라 Copied Translation 방식을 통한 다양한 실험을 통하여 데이터 증강기법이 기계번역 성능에 미치는 영향에 대해서 살펴본다. 실험결과 Back Translation과 Copied Translation과 같은 데이터 증강기법이 기계번역 성능향상에 도움을 줌을 확인 할 수 있었으며 Batch를 구성할 때 상대적 가중치를 두는 것이 성능향상에 도움이 됨을 알 수 있었다.
영한 기계번역에서 전치사구의 해석 부착의 문제(Attachment Problem)와 의미 해석의 문제, 그리고 해석에 필요한 정보 획득의 문제가 있다. 이 세 가지 문제를 해결하기 위하여 본 논문은 전치사구 해석 시스템을 제시한다. 이 시스템은 규칙 제어기와 신경망의 하이브리드 구문해석 시스템, 격의미 해석 시스템, 그리고 신경망 의 입력 정보를 자동으로 생성하는 의미속성 생성기로 구성한다. 의미속성 생성기는 시스템의 입력이 되는 의미속성을 자동으로 생성하는 방법으로 인위적인 방법의 단점 을보완하여 객관성 있는 전치사구 해석을 하게 한다. 격의미 해석 시스템은 영한 기계 번역에 맞는 격의미를 찾아내어 자연스런 한국어 생성을 하게 하고 구문해석 시스템은 규칙 방법의 장점과 신경망 방법의 장점을 취한 하이브리드 방식의 시스템으로 전치사 구 부착의 문제를 해결한다.
Neural Machine Translation (NMT) 모델은 단일 신경망 구조만을 사용하는 End-to-end 방식의 기계번역 모델로, 기존의 Statistical Machine Translation (SMT) 모델에 비해서 높은 성능을 보이고, Feature Engineering이 필요 없으며, 번역 모델 및 언어 모델의 역할을 단일 신경망에서 수행하여 디코더의 구조가 간단하다는 장점이 있다. 그러나 NMT 모델은 출력 언어 사전(Target Vocabulary)의 크기에 비례해서 학습 및 디코딩의 속도가 느려지기 때문에 출력 언어 사전의 크기에 제한을 갖는다는 단점이 있다. 본 논문에서는 NMT 모델의 출력 언어 사전의 크기 제한 문제를 해결하기 위해서, 입력 언어는 단어 단위로 읽고(Encoding) 출력 언어를 문자(Character) 단위로 생성(Decoding)하는 방법을 제안한다. 출력 언어를 문자 단위로 생성하게 되면 NMT 모델의 출력 언어 사전에 모든 문자를 포함할 수 있게 되어 출력 언어의 Out-of-vocabulary(OOV) 문제가 사라지고 출력 언어의 사전 크기가 줄어들어 학습 및 디코딩 속도가 빨라지게 된다. 실험 결과, 본 논문에서 제안한 방법이 영어-일본어 및 한국어-일본어 기계번역에서 기존의 단어 단위의 NMT 모델보다 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.