• Title/Summary/Keyword: 신경 기계 번역

Search Result 48, Processing Time 0.024 seconds

Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment (단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역)

  • Jung, Young-Jun;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

NMT Training Method for Korean-English Idiom Machine Translation (한-영 관용구 기계번역을 위한 NMT 학습 방법)

  • Choi, Min-Joo;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.353-356
    • /
    • 2020
  • 관용구는 둘 이상의 단어가 결합하여 특정한 뜻을 생성한 어구로 기계번역 시 종종 오역이 발생한다. 이는 관용구가 지닌 함축적인 의미를 정확하게 번역할 수 없는 기계번역의 한계를 드러낸다. 따라서 신경망 기계 번역(Neural Machine Translation)에서 관용구를 효과적으로 학습하려면 관용구에 특화된 번역 쌍 데이터셋과 학습 방법이 필요하다. 본 논문에서는 한-영 관용구 기계번역에 특화된 데이터셋을 이용하여 신경망 기계번역 모델에 관용구를 효과적으로 학습시키기 위해 특정 토큰을 삽입하여 문장에 포함된 관용구의 위치를 나타내는 방법을 제안한다. 실험 결과, 제안한 방법을 이용하여 학습하였을 때 대부분의 신경망 기계 번역 모델에서 관용구 번역 품질의 향상이 있음을 보였다.

  • PDF

Coverage Modeling in Neural Machine Translation using Orthogonal Regularization (직교 정규화를 이용한 신경망 기계 번역에서의 커버리지 모델링)

  • Lee, Yo-Han;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.561-566
    • /
    • 2018
  • 최근 신경망 번역 모델에 주의 집중 네트워크가 제안되어 기존의 기계 번역 모델인 규칙 기반 번역 모델, 통계적 번역 모델에 비해 높은 번역 성능을 보이고 있다. 그러나 주의 집중 네트워크가 잘못 모델링되는 경우 과소 번역 현상이 나타난다. 신경망 번역 모델에 커버리지 메커니즘을 추가하여 과소 번역 현상을 완화하는 연구가 진행되었으나 이는 모델의 구조를 변경해야하는 불편함이 있다. 본 논문에서는 신경망 번역 모델의 구조를 변경하지 않고 새로운 손실 함수를 정의하여 과소 번역 현상을 완화하는 방법을 제안한다. 한-영 번역 실험을 통해 제안한 주의 집중 네트워크의 정규화 방법이 커버리지 메커니즘의 목적을 효율적으로 달성함을 보인다.

  • PDF

The Blended Approach of Machine Translation and Human Translation (기계번역과 인간번역의 혼합적 접근법)

  • Kim, Yangsoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.239-244
    • /
    • 2022
  • Neural Machine Translation (NMT) is gradually breaking down the boundary between human and machine translation. We look at actual cases of human and machine translation and discuss why machine translation needs a human touch. In this paper, we raise three driving questions: Can humans be replaced by machines?; How human translators can remain successful in a NMT-driven world?; Is it possible to eliminate language barrier in the era of NMT and World Englishes? The answers to these questions are all negative. We suggest that machine translation is a useful tool with rapidity, accuracy, and low cost productivity. However, the machine translation is limited in the areas of culture, borrowing, ambiguity, new words and (national) dialects. The machines cannot imitate the emotional and intellectual abilities of human translators since machines are based on machine learning, while humans are on intuition. The machine translation will be a useful tool that does not cause moral problems when using methods such as back translation and human post-editing. To conclude, we propose the blended approach that machine translation cannot be completed without the touch of human translation.

English-Korean Neural Machine Translation using MASS (MASS를 이용한 영어-한국어 신경망 기계 번역)

  • Jung, Young-Jun;Park, Cheon-Eum;Lee, Chang-Ki;Kim, Jun-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.236-238
    • /
    • 2019
  • 신경망 기계 번역(Neural Machine Translation)은 주로 지도 학습(Supervised learning)을 이용한 End-to-end 방식의 연구가 이루어지고 있다. 그러나 지도 학습 방법은 데이터가 부족한 경우에는 낮은 성능을 보이기 때문에 BERT와 같은 대량의 단일 언어 데이터로 사전학습(Pre-training)을 한 후에 미세조정(Finetuning)을 하는 Transfer learning 방법이 자연어 처리 분야에서 주로 연구되고 있다. 최근에 발표된 MASS 모델은 언어 생성 작업을 위한 사전학습 방법을 통해 기계 번역과 문서 요약에서 높은 성능을 보였다. 본 논문에서는 영어-한국어 기계 번역 성능 향상을 위해 MASS 모델을 신경망 기계 번역에 적용하였다. 실험 결과 MASS 모델을 이용한 영어-한국어 기계 번역 모델의 성능이 기존 모델들보다 좋은 성능을 보였다.

  • PDF

Study on Translators' Acceptance of Machine Translation (전문번역사들의 기계번역 수용에 관한 연구)

  • Chun, Jong-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.281-288
    • /
    • 2020
  • This study delves into acceptance on neural network machine translation (NMT) such as Google Translate and Papago that uses technical acceptance model. In conclusion, it turned out that perceived usefulness impacts translators' attitude towards NMT. In other words, if translators determine that NMT is related to their work and the quality of the deliverables is guaranteed, they were more positive towards it. Unlike the existing normative approach that translators feel threatened by NMT, empirical results tell us translators perceive NMT as a business tool and such perception was largely influenced by advices of their colleagues and friends and expectations for use.

Expanding Korean/English Parallel Corpora using Back-translation for Neural Machine Translation (신경망 기반 기계 번역을 위한 역-번역을 이용한 한영 병렬 코퍼스 확장)

  • Xu, Guanghao;Ko, Youngjoong;Seo, Jungyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.470-473
    • /
    • 2018
  • 최근 제안된 순환 신경망 기반 Encoder-Decoder 모델은 기계번역에서 좋은 성능을 보인다. 하지만 이는 대량의 병렬 코퍼스를 전제로 하며 병렬 코퍼스가 소량일 경우 데이터 희소성 문제가 발생하며 번역의 품질은 다소 제한적이다. 본 논문에서는 기계번역의 이러한 문제를 해결하기 위하여 단일-언어(Monolingual) 데이터를 학습과정에 사용하였다. 즉, 역-번역(Back-translation)을 이용하여 단일-언어 데이터를 가상 병렬(Pseudo Parallel) 데이터로 변환하는 방식으로 기존 병렬 코퍼스를 확장하여 번역 모델을 학습시켰다. 역-번역 방법을 이용하여 영-한 번역 실험을 수행한 결과 +0.48 BLEU 점수의 성능 향상을 보였다.

  • PDF

Neural Machine Translation with Dictionary Information (사전 정보를 활용한 신경망 기계 번역)

  • Hyun-Kyun Jeon;Ji-Yoon Kim;Seung-Ho Choi;Bongsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.86-90
    • /
    • 2023
  • 최근 생성형 언어 모델이 주목받고 있으며, 이와 관련된 과제 또한 주목받고 있다. 언어 생성과 관련하여 많은 연구가 진행된 분야 중 하나가 '번역'이다. 번역과 관련하여, 최근 인공신경망 기반의 신경망 기계 번역(NMT)가 주로 연구되고 있으며, 뛰어난 성능을 보여주고 있다. 하지만 교착어인 한국어에서 언어유형학 상의 다른 분류에 속한 언어로 번역은 매끄럽게 번역되지 않는다는 한계가 여전하다. 따라서, 본 논문에서는 이러한 문제점을 극복하기 위해 한-영 사전을 통한 번역 품질 향상 방법을 제안한다. 또한 출력과 관련하여 소형 언어모델(sLLM)을 통해 CoT데이터셋을 구축하고 이를 기반으로 조정 학습하여 성능을 평가할 것이다.

  • PDF

A Study on the Performance Improvement of Machine Translation Using Public Korean-English Parallel Corpus (공공 한영 병렬 말뭉치를 이용한 기계번역 성능 향상 연구)

  • Park, Chanjun;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.271-277
    • /
    • 2020
  • Machine translation refers to software that translates a source language into a target language, and has been actively researching Neural Machine Translation through rule-based and statistical-based machine translation. One of the important factors in the Neural Machine Translation is to extract high quality parallel corpus, which has not been easy to find high quality parallel corpus of Korean language pairs. Recently, the AI HUB of the National Information Society Agency(NIA) unveiled a high-quality 1.6 million sentences Korean-English parallel corpus. This paper attempts to verify the quality of each data through performance comparison with the data published by AI Hub and OpenSubtitles, the most popular Korean-English parallel corpus. As test data, objectivity was secured by using test set published by IWSLT, official test set for Korean-English machine translation. Experimental results show better performance than the existing papers tested with the same test set, and this shows the importance of high quality data.

Study on Decoding Strategies in Neural Machine Translation (인공신경망 기계번역에서 디코딩 전략에 대한 연구)

  • Seo, Jaehyung;Park, Chanjun;Eo, Sugyeong;Moon, Hyeonseok;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.69-80
    • /
    • 2021
  • Neural machine translation using deep neural network has emerged as a mainstream research, and an abundance of investment and studies on model structure and parallel language pair have been actively undertaken for the best performance. However, most recent neural machine translation studies pass along decoding strategy to future work, and have insufficient a variety of experiments and specific analysis on it for generating language to maximize quality in the decoding process. In machine translation, decoding strategies optimize navigation paths in the process of generating translation sentences and performance improvement is possible without model modifications or data expansion. This paper compares and analyzes the significant effects of the decoding strategy from classical greedy decoding to the latest Dynamic Beam Allocation (DBA) in neural machine translation using a sequence to sequence model.