• Title/Summary/Keyword: 신경회로망 제어기

Search Result 271, Processing Time 0.023 seconds

A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network (진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계)

  • Kim, Dae-Jun;Chun, Jong-Min;Jeon, Hyang-Sig;Park, Young-Kiu;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

Pallet speed control in a sintering plant using neural networks (신경회로망을 이용한 소결기 팰릿 속도 제어)

  • Jang, Min;Cho, Sung-Jun
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.261-270
    • /
    • 1999
  • Sintering transforms powdered ore into lumped ore so that the latter can be used in a blast furnace. The powdered ore combined with coke and other materials is loaded into a container and moved along by a pallet while the ignited coke bums. The speed by which the pallet moves determines how much sintering takes place. Since the process is complicated and lacks an accurate mathematical model, human operators manually control the speed by monitoring various factors in the plant. In this paper, we propose a neural network-based pallet speed controller which copies human operator knowledge. Actual process data were collected from a sintering plant fer eight months and preprocessed to remove noisy and inconsistent data. A multilayer perceptron was trained using a back-propagation learning algorithm. In on-line testing at the sinter plant, the proposed model reliably controlled pallet speed during normal operation without the help of human operators. Moreover, the duality and productivity was as good as with human operators.

  • PDF

Pallet speed control in a sintering plant using neural networks (신경회로망을 이용한 소결기 팰릿 속도 제어)

  • Jang, Min;Cho, Sung-Jun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.261-270
    • /
    • 1999
  • Sintering transforms powdered ore into lumped ore so that the latter can be used in a blast furnace. The powdered or combined with coke and other materials is loaded into a container and moved along by a pallet while the ignited coke burns. The speed by which the pallet moves determines how much sintering takes place. Since the process is complicated and lacks an accurate mathematical model, human operators manually control the speed by monitoring various factors in the plant. In this paper, we propose a neural network-based pallet speed controller which copies human operator knowledge. Actual process data were collected from a sintering plant for eight months and preprocessed to remove noisy and inconsistent data. A multilayer perceptron was trained using a back-propagation learning algorithm. In on-line testing at the sinter plant, the proposed model reliably controlled pallet speed during normal operation without the help of human operators. Moreover, the quality and productivity was as good as with human operators.

  • PDF

Development of Algorithm for Optimal Energy Operation of Industrial Load Using ANN (ANN을 이용한 산업현장의 최적 에너지 운용 알고리즘 개발)

  • Kim, Seob-Han;Kim, Byeong-Mpk;Kim, Byeong-Ki;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.516-519
    • /
    • 2012
  • 산업 현장에 필수적으로 사용하는 유틸리티 시스템(Utility System)의 하나인 에어를 생산하는 공기압 축기의 운전방식은 조작 패널부에 사용자가 설정한 셋팅값에 의해 내부의 밸브를 제어하여 로딩 및 언로딩 운전을 한다. 이로 인해 대용량(100HP, 200HP)의 공기압축기를 여러대 사용하는 수용가에서는 연속 다발적인 운전으로 인한 전력 사용량의 변동으로 역률 저하 및 연속가동으로 인한 설비 과부하 및 내부 기계 베어링 피로도 증가 및 파손 등 고장이 발생되는 문제점이 있다. 따라서 본 논문에서는 인공 신경회로망(ANN:Artificial Neural Network)을 이용하여 최적의 에너지 운용 알고리즘을 제안하여 실계통의 문제점을 분석하여 개선하고자 한다.

  • PDF

Design of Adaptive Fuzzy Logic Controller using Tabu search and Neural Network (Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hoon;Hwang, Gi-Hyun;Kim, Hyung-Su;Mun, Kyung-Jun;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.34-36
    • /
    • 2000
  • This paper proposes the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gain of input-output variables of fuzzy logic controller and weights of neural network using Tabu search. Neural network used to tune the output gain of FLC adaptively. We have weights of neural network learned using back propagation algorithm. We performed the nonlinear simulation on an single-machine infinite system to prove the efficiency of the proposed method. The proposed AFLC showed the better performance than PD controller in terms of the settling time and damping effect, for power system operation condition.

  • PDF

Coordination Control of ULTC Transformer and STACOM using Kohonen Neural Network (코호넨 신경회로망을 이용한 ULTC 변압기와 STACOM의 협조제어)

  • 김광원;이흥재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1103-1111
    • /
    • 1999
  • STACOM will be utilized to control substation voltage in the near future. Although STACOM shows good voltage regulation performance owing to its rapid and continuous response, it needs additional reactive power compensation device to keep control margin for emergency such as fault. ULTC transformer is one of good candidates. This paper presents a Kohonen Neural Network (KNN) based coordination control scheme of ULTC transformer and STACOM. In this paper, the objective function of the coordination control is minimization of both STACOM output and the number of switchings of ULTC transformer while maintaining substation voltage magnitude to the predefined constant value. This coordination, control is performed based on reactive load trend of the substation and KNN which offers optimal tap position in view of STACOM output minimization. The input variables of KNN are active and reactive power of the substation, current tap position, and current STACOM output. The KNN is trained by effective Iterative Condensed Nearest Neighbor (ICNN) rule. This coordination control applied to IEEE 14 bus system and shows satisfactory results.

  • PDF

Design of variable controller for WMR using a Neural Network (신경회로망을 이용한 WMR의 가변제어기 설계)

  • Kim, Kyu-Tae;Kim, Sung-Hoi;Park, Jong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.157-160
    • /
    • 2001
  • This paper presents A Design of WMR Controller that being composed of cooperative relation between PID controller and optimized neural network algorithm, it operate a variable control by velocity. Some proposed algorithm in the past just depended on PID controller for the control of position of WMR but for more efficient control we design a variable controller that operate control by PD controller using neural network if it is satisfied with any given condition. it adjust gain of PD controller for real time control using a fast feedforward algorithm which is different with Form of the standard backpropagation algorithm.

  • PDF

The study on the Algorithm for Desing of Fuzzy Logic Controller Using Neural Network (신경회로망을 이용한 퍼지제어기 설계 알고리즘에 관한 연구)

  • 채명기;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.243-248
    • /
    • 1996
  • In this paper, a general neural-network-based connectionist model, called Fuzzy Neural Network(FNN), is proposed for the realization of a fuzzy logic control system. The proposed FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such FNN can be constructed from training examples by learning rule, and the connectionist structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Computer simulation examples will be presented to illustrate the performance and applicability of the proposed FNN, and their associated learning algorithms.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network (신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyun;Kim, Hyung-Su;Park, June-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

A Study on Development of Multi-step Neural Network Predictive Controller (다단 신경회로망 예측제어기 개발에 관한 연구)

  • Bae, Geun-Shin;Kim, Jin-Su;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.62-64
    • /
    • 1996
  • Neural network as a controller of a nonlinear system and a system identifier has been studied during the past few years. A well trained neural network identifier can be used as a system predictor. We proposed the method to design multi-step ahead predictor and multi-step predictive controller using neural network. We used the input and out put data of B system to train the NNP and used the forecasted approximat system output from NNP as B input of NNC. In this paper we used two-step ahead predictive controller to test B heating controll system and compared with PI controller.

  • PDF