• Title/Summary/Keyword: 신경회로망 기반 적응제어

Search Result 22, Processing Time 0.022 seconds

Nonlinear Adaptive Control of Unmanned Helicopter Using Neural Networks Compensator (신경회로망 보상기를 이용한 무인헬리콥터의 비선형적응제어)

  • Park, Bum-Jin;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • To improve the performance of inner loop based on PD controller for a unmanned helicopter, neural networks are applied. The performance of PD controller designed on the response characteristics of error dynamics decreases because of uncertain nonlinearities of the system. The nonlinearities are decoupled to modified dynamic inversion model(MDIM) and are compensated by the neural networks. For the training of the neural networks, online weight adaptation laws which are derived from Lyapunov's direct method are used to guarantee the stability of the controller. The results of the improved performance of PD controller by neural networks are illustrated in the simulation of unmanned helicopter with nonlinearities,

Adaptive Output Feedback Control of Unmanned Helicopter Using Neural Networks (신경회로망을 이용한 무인헬리콥터의 적응출력피드백제어)

  • Park, Bum-Jin;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.990-998
    • /
    • 2007
  • Adaptive output feedback control technique using Neural Networks(NN) is proposed for uncertain nonlinear Multi-Input Multi-Output(MIMO) systems. Modified Dynamic Inversion Model(MDIM) is introduced to decouple uncertain nonlinearities from inversion-based control input. MDIM consists of approximated dynamic inversion model and inversion model error. One NN is applied to compensate the MDIM of the system. The output of the NN augments the tracking controller which is based upon a filtered error approximation with online weight adaptation laws which are derived from Lyapunov's direct method to guarantee tracking performance and ultimate boundedness. Several numerical results are illustrated in the simulation of Van der Pol system and unmanned helicopter with model uncertainties.

Study on Adaptive Higher Harmonic Control Using Neural Networks (신경회로망을 이용한 적응 고차조화제어 기법 연구)

  • Park, Bum-Jin;Park, Hyun-Jun;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.39-46
    • /
    • 2005
  • In this paper, adaptive higher harmonic control technique using Neural Networks (NN) is proposed. First, linear transfer function is estimated to relate the input harmonics and output harmonics, then NN which has the universal function approximation property is applied to expand application range of the transfer function. Optimal control gain matrix computed from the transfer function is used to train NN weights. Online weight adaptation laws are derived from Lyapunov's direct method to guarantee internal stability. Results of the simulation of 6-input 2-output nonlinear system show that adaptive HHC is applicable to the system with uncertain transfer function.

적응 퍼지제어

  • 공성곤;김민수
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.101-108
    • /
    • 1995
  • 이 글에서는 퍼지제어기의 기본 구성에 대해 간단히 다루고 모델에 근거해 다음 제어상태를 예견해 내는 제어기법인 모델참조 적응을 기반으로 한 적응 퍼지제어에 대해서, 그리고 신경회로망을 이용한 퍼지제어기의 파라미터의 조정과 클러스터링을 통해서 퍼지규칙을 예측하는 적응 퍼지제어기에 대해서 살펴보았다.

  • PDF

Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network (신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계)

  • Cho, Won-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a direct nonlinear multivariable self-tuning PID controller using neural network which adapts to the changing parameters of the nonlinear multivariable system with noises and time delays. The nonlinear multivariable system is divided linear part and nonlinear part. The linear controller are used the self-tuning PID controller that can combine the simple structure of a PID controllers with the characteristics of a self-tuning controller, which can adapt to changes in the environment. The linear controller parameters are obtained by the recursive least square. And the nonlinear controller parameters are achieved the through the Back-propagation neural network. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation results are presented to adapt the nonlinear multivariable system with noises and time delays and with changed system parameter after a constant time. The proposed PID type nonlinear multivariable self-tuning method using neural network is effective compared with the conventional direct multivariable adaptive controller using neural network.

Design of Wavelet Neural Network Based Indirect Adaptive Controller Using EKF Training Method (확장 칼만 학습 알고리듬을 이용한 웨이블릿 신경 회로망 기반 간접 적응 제어기 설계)

  • Kim, Kyung-Ju;Oh, Joon-Seop;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.361-363
    • /
    • 2004
  • 시간 및 주파수 특성 분석이 용이한 웨이블릿을 신경회로망에 적용시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등 여러 가지 방법이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점을 가진다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습 방법으로 일반적으로 비선형 시스템 추정에 주로 사용되는 확장 칼만 필터 알고리듬을 적용한 신경회로망을 제안한다. 또한 제안된 학습 알고리듬을 이용한 웨이블릿 신경 회로망으로 간접 적응 제어기를 설계하여 연속 시간 혼돈 시스템인 Duffing 시스템의 제어에 적용함으로써 확장 칼만 필터 학습 알고리듬을 적용한 웨이블릿 신경 회로망 모델의 우수성을 보인다.

  • PDF

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.

Adaptive Control System Designs for Aircraft Wing Rock (항공기 Wing Rock 운동에 대한 적응제어시스템 설계)

  • Shin, Yoong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.725-734
    • /
    • 2011
  • At high angles of attack, aircraft dynamics can display an oscillatory lateral behavior that manifests itself as a limit cycle known as wing rock. In this paper, a classical and neural network based adaptive control design methods of adaptively stabilizing the oscillatory motion by adapting uncertainties are described in detail. All methods are simulated and compared using a model for an 80o swept delta wing.

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.

Motion Control of an AUV Using a Neural-Net Based Adaptive Controller (신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어)

  • 이계홍;이판묵;이상정
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamics, and a sliding mode control is introduced to attenuate the effects of the neural network's reconstruction errors and the disturbances of AUV's dynamics. The presented controller is consist of three parallel schemes; linear feedback control, sliding mode control and neural network. Lyapunov theory is used to guarantee the asymptotic convergence of trajectory tracking errors and the neural network's weights errors. Numerical simulations for motion control of an AUV are performed to illustrate to effectiveness of the proposed techniques.

  • PDF