• Title/Summary/Keyword: 신경세포

Search Result 1,682, Processing Time 0.031 seconds

Ultrastructure of Brachial Ganglion in Korean Octopus, Octopus minor (한국산 낙지 (Octopus minor) 상완신경절의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.30 no.3
    • /
    • pp.265-272
    • /
    • 2000
  • In this study, the brachial ganglion of Octopus minor was investigated with light microscope and electron microscope,andthefollowingresultswereobtained. The brachial ganglions of the octopus, round in shapes , are located under each of suckers. Their sizes are proportional to those of the suckers. A brachial ganglion of round shape consists of cortex and medulla. In cortex, nerve cells exist collectively while neuropiles in medulla. Three kinds of nerve cells (large, middle, and small neurons) are found in the cluster of nerve cells. The small one is a round cell of about $0.9{\mu}m$ in diameter while the middle and large ones are an elliptical cell of $1.6\times1.3{\mu}m$ and an ovoid cell of $2.8{\mu}m$ in diameter, respectively. All of those cells look light due to their low electron densities , in which cell organelle are not well developed. It was also observed that the middle neurons are surrounded by median electron-dense neuroglial cells of pyramidal shapes and about $0.6\times0.4{\mu}m$ in sizes. In the neuropiles of medulla, dendrites and axons of various sizes make a complex net. They contain four kinds of chemical synaptic vesicles-electron-dense synaptic vesicle of 100 nm in diameter, median electron-dense synaptic vesicle of 90 nm in diameter, electron-dense cored synaptic vesicle of 90 nm in diameter, and electron-lucent synaptic vesicle of 50 nm in diameter.

  • PDF

A Study on the Neurotransmitters Acting on the Medullospinal Tract Cells Related to the Cardiovascular Activity (심맥관계 활동과 관련있는 연수 척수로 세포에 작용하는 신경흥분전달물질에 대한 연구)

  • Seo, Dong-Man;Kim, Sang-Jeong;Lim, Won-il;Kim, Jun;Kim, Chong-Whan
    • Journal of Chest Surgery
    • /
    • v.31 no.5
    • /
    • pp.441-450
    • /
    • 1998
  • The medullospinal tract cells are known to play an important role in the control of the cardiovascular activities. To clarify the modes of action of the neurotransmitters on these cells, glutamate, GABA(${\gamma}$-aminobutyric acid) and bicuculline were applicated iontophoretically into the rostral ventrolateral medulla in adult cats anesthetised with ${\alpha}$-chloralose. Followings are the results obtained : 1. The spontaneous activities of the cardiac-related neurons in rostral ventrolateral medulla (RVLM) were increased by the glutamate and decreased by the GABA. 2. Bicuculline, an antagonist of GABA, alone didn't increase the frequency of the action potentials, but could reverse the cellular response to the GABA, simultaneously applicated. 3. GABA seemed to decrease the peak as well as the basal discharge of the neurons in RVLM, but hardly changed their periodicities. 4. The cellular responses of RVLM evoked by the peripheral nerve stimulation could be inhibited by the iontophoretically released GABA. In conclusion, GABA seemed to act as an inhibitory neurotransmitter on the cardiac- related neurons in RVLM of the cats anesthetized with ${\alpha}$-chloralose. But the maintenance of the periodicities of these cells after the application of bicuculline suggested that the afferent activity of the baroreceptor didn't play a key role in the spontaneous activities of the RVLM neurons.

  • PDF

Immunocytochemical mapping of serotonergic neurons in the centrqal nervous system in the larva of Lucilia illustris (연두금파리 유충의 중추신경계에서 세로토닌 면역반응성세포의 동정)

  • 김관선;이봉희김우갑
    • The Korean Journal of Zoology
    • /
    • v.36 no.1
    • /
    • pp.6-13
    • /
    • 1993
  • 연두금파리 유충의 뇌와 복신경절에 분포하는 세로토닌 면역반응성 세포를 면역조직화학적 방법을 이용하여 동정하였다. 세로토인세포는 뇌에 28개, 제1식도하신경절의 첫째마디에 6개, 둘째마디에 10개 그리고 세째마디에 6개가 각각 존재하였다. 그리고 앞가슴신경절에 6개, 가운데가슴신경절에 4개 그리고 됫가슴신경절에 4개가 각각 위치하였다. 또한 복부신경절에서는 첫새 마디부터 일곱째 마디까지 각각 4개가 존재하였고 마지막마디인 여덟째마디에서는 단지 두개의 세포만이 관찰되었다. 결국 연두금파리 유충의 중추신경계에는 모두 94개의 세로토닌 면역반응성 세포들이 분포하였다. 이들 세포로부터 뻗어나온 축색들은 뉴로파일내에서 분지하거나 횡연합섬유를 이루었다.

  • PDF

ATP-Induced Apoptosis of Human Luteinized Granulosa Cells: a Role of Mitochondria

  • 김미란;박동욱;김영아;조태섭;황경주;민철기
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.32-36
    • /
    • 2001
  • 난소의 재형성 과정은 난소 내 여러 조절인자들에 의해 조절되는 성장 및 퇴행 과정을 반복하는 특징을 가지고 있다. 황체는 주기적 성장과 퇴행을 보이며 과립세포의 세포자멸사 (apoptosis)를 통해 황체의 퇴행이 일어나게 된다지. 이러한 세포자멸사 과정은 난소의 정상 생리에 매우 중요하다. ATP 는 자율신경으로부터 세포외 유출을 통해 분비되어 근육 수축, 신경전달체계, 외분비 및 내분비 호르몬의 분비, 면역반응, 염증, 혈소판 응집, 동통 및 심장기능의 조절 등 매우 다양한 생물학적 기능에 영향을 미친다. 이러한 작용은 세포 표변에 존재하는 purinoceptor를 통해 이루어지는 것으로 알려져 있다. ATP는 일반적으로 세포 내에서는 에너지원으로서 작용하나 세포외부에 존재하는 ATP의 경우에는 조절물질로 작용하여 어떤 세포에 있어서는 세포용해를 일으키기도 하며, 어떤 세포에서는 세포자멸사를 유발하기도 한다. 세포 내에 존재하는 ATP는 세포의 주요한 에너지원으로 사용되며 살아있는 세포에서는 세포막을 통과하지 못하는 반면 세포 외에 존재하는 ATP는 말초신경계 혹은 중추신경계에 있어서 매우 중요한 신경전달물질로 작용하고 있다. (중략)

  • PDF

Induction of Midbrain Dopaminergic Phenotype in Nurr 1-Over expressing Human Neural Stem Cells (사람 신경 간세포에서 도파민 신경세포 분화유도에 대한 Nurr 1 유전자의 역할 규명)

  • Kim, Han-Jip;Lee, Haksup;Kim, Hyon-Chang;Min, Churl-Ki;Lee, Myung-Ae;Kim, Seung-Up;Han, Jin;Youm, Jae-Boum;Kim, Nari;Park, Won, Sun;Kim, Taeho;Kim, Euiyong;Han, Il-Yong
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.363-370
    • /
    • 2005
  • Neural stem cells (NSCs) of the central nervous system (CNS) have raised a great interest not only for their importance in basic neural development but also for their therapeutic potentials in neurologically degenerative diseases such as Parkinson's, Alzheimer and stroke. During the CNS development, two molecular cascades determine specification of midbrain dopamine system. In one pathway, FGF-8, sonic hedgehog and transcription factor Nurr1 specify dopamine neurotransmitter phenotype. In the other, transcription factors $Lm{\times}lb\;and\;Pt{\times}3$ are required for induction of dopaminergic neurons. In Nurr1 knockout mouse, tyrosine hydroxylase (TH) positive cells fail to appear in substantia nigra, indicating that Nurr1 is essential in specification of dopaminergic cell phenotype. In this study, we used the immortalized human NSCs retrovirally transduced with Nurr1 gene to probe the Nurr1 mediated mechanism to induce dopamine phenotype. While Nurr1 over-expression alone did not generate dopamine phenotype in NSCs, applications of retinoid and forskolin induced expression of TH and AADC mRNAs. In addition, co-cultures of Nurr1 expressing NSCs with human astrocytes induced a marked increase of TH expression. In this co-culture system, the addition of retinoid and forskolin dramatically increased expression of TH. These results indicate that the immortalized human NSCs with Nurr1 gene could have a clinical utility for cell replacement for the Parkinson patients.

Effect on Pancreatic Beta Cells and Nerve Cells by Low LET X-ray (Low LET X-ray가 췌장 ${\beta}$ 세포와 신경세포에 미치는 효과)

  • Park, Kwang-Hun;Kim, Kgu-Hwan
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Cultured pancreatic beta cells and nerve cells, it is given normal condition of 10% FBS (fetal bovine serum), 11.1 mM glucose and hyperglycemia codition of 1% FBS, 30 mM glucose. For low LET X-ray irradiated with 0.5 Gy/hr dose-rate(total dose: 0.5 to 5 Gy). Survival rates were measured by MTT assay. When non irradiated, differentiated in the pancreatic beta cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a small reduction. However increasing the total dose of X-ray, the survival rate of normal conditions decreased slightly compared to the survival rate of hyperglycemia conditions, the synergistic effect was drastically reduced. When non irradiated, undifferentiated in the nerve cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a large reduction. As the cumulative dose of X-ray normal conditions and hyperglycemia were all relatively rapid cell death. But the rate of decreased survivals by almost parallel to the reduction proceed and it didn't show synergistic effect.

Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array (다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분)

  • Jin Gye Hwan;Lee Tae Soo;Goo Yang Sook
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.148-154
    • /
    • 2005
  • Since the output of retina for visual stimulus is carried by neurons of very diverse functional properties, it is not adequate to use conventional single electrode for recording the retinal action potential. For this purpose, we used newly developed multichannel recording system for monitoring the simultaneous electrical activities of many neurons in a functioning piece of retina. Retinal action potentials are recorded with an extra-cellular planar array of 60 microelectrodes. In studying the collective activity of the ganglion cell population it is essential to recognize basic functional distinctions between individual neurons. Therefore, it is necessary to detect and to classify the action potential of each ganglion cell out of mixed signal. We programmed M-files with MATLAB for this sorting process. This processing is mandatory for further analysis, e.g. poststimulus time histogram (PSTH), auto-correlogram, and cross-correlogram. We established MATLAB based protocol for waveform classification and verified that this approach was effective as an initial spike sorting method.

  • PDF

Evidence for the Drp1-dependent Mitochondrial Fission in the Axon of the Rat Cerebral Cortex Neurons (흰쥐 대뇌 피질 신경세포의 축삭에서 Drp1 의존적 미토콘드리아의 분열)

  • Cho, Bong-Ki;Lee, Seung-Bok;Sun, Woong;Kim, Young-Hwa
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.249-255
    • /
    • 2011
  • Neurons utilize a large quantity of energy for their survival and function, and thereby require active mitochondrial function. Mitochondrial morphology shows dynamic changes, depending on the cellular condition, and mitochondrial dynamics are required for neuronal development and function. In this study, we found that the length of mitochondria in the distal axon is significantly shorter than that of mitochondria in dendrites or proximal axons of cerebral cortical neurons, and the reason for this difference is the local fission within the axon. We also found that suppression of Drp1, a key regulator of mitochondrial fission, resulted in significant elongation of mitochondria in axons. Collectively, these results suggest that local mitochondrial fission within the axon contributes to region-dependent mitochondrial length differences in the axons of cortical neurons.

Developmental Expression of Neurofilament 3 (NF-M) in the Cultured Rat Cortical Neurons (배양한 흰쥐 대뇌신경세포에서 신경미세섬유 3(NF-M)의 발생학적 표현)

  • Jung Jae-Seob;Cho Sun-Jung;Jin IngNyol;Jung Seung Hyun;Moon Il Soo
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.600-606
    • /
    • 2005
  • Neurofilament (NF) proteins constitute the major intermediate filament type in adult neurons. They are made up by the copolymerization of the neurofilament light (NF-L, 61 kDa), medium (NF-M, 90kDa), and heavy (NF-H, 115 kDa) proteins. Although neurofilaments play a crucial .ole in neuronal growth, organization, shape, and plasticity, their expression pattern and cellular distribution in the developing neurons remain unknown. In this study, we have produced a rabbit polyclonal antibody specific to NF-M and investigated expression of NF-M in cultured cortical neurons. Immunostaining of 12 and 24 h cultures revealed strong expression of NF-M in axonal growth cone and in the region of a soma toward the axon. Doublestaining of 4 and 14 DIV corical neurons with NF-M and PSD95 antibodies revealed that both axon and dendrites were stained intensely with NF-M antibody, and that NF-M immunostaining along dendrites is often punctate and colocalize with PSD95 puncta, indicating that the puncta represent postsynaptic spines. Presence of NF-M in the postsynaptic spine was also indicated by immunoblot analysis of the postsynaptic density fraction. Taken together, our results show intensive targeting of NF-M into axons in the early axonal development, and into spines in mature neurons, indicating its important functions in axon and spine development.

Histochemically-reactive Zinc in the Rat Dorsal Root Ganglion (DRG) Neurons: Zinc Selenium Autometallography (랫드 척수신경절내 zinc의 분포양상: Zinc Selenium Autometallography)

  • Kim, Yi-Suk;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.40 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • The present study was designed to demonstrate ionic zinc in the rat DRG by means of zinc selenium autometallography($ZnSe^{AMG}$). Ganglion cells varied in size from 15 to 100 ${\mu}m$. The smaller neurons were strongly stained with AMG, whereas the larger cells were weakly stained. Each large ganglion cell was surrounded by perineuronal satellite cells, showing apparent AMG staining. We demonstrated for the first time the existence of zinc-containing satellite cells in the rodent DRG. Using electron microscopy, fine AMG grains were observed scattered in the somata of the DRG neurons, especially small cells. However, much lower concentrations of the AMG grains occupied in the large cells, and these were mostly localized in lysosome-like organelles. These results indicate that zinc may be involved in sensory transmission in the DRG level.