• Title/Summary/Keyword: 신경세포사멸

Search Result 122, Processing Time 0.029 seconds

The effect of resistance exercise on β-amyloid metabolism and cognitive function in a mouse model of Alzheimer's disease (저항성 운동이 알츠하이머 형질전환 생쥐 뇌의 베타 아밀로이드 대사와 인지기능에 미치는 영향)

  • Jang, Yong-Chul;Koo, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.418-428
    • /
    • 2020
  • The aim of this study was to investigate the effect of resistance exercise(RE) on beta-amyloid(Aβ) metabolism, neuronal cell death, and cognitive function in the transgenic mice model of Alzheimer's disease(AD). Fourteen transgenic(tg) mice and fourteen non-transgenic(non-tg) mice were divided into four groups: (1)non-tg-control(NTC, n=7) (2)non-tg-RE(NTRE, n=7) (3)tg-control(TC, n=7), and (4)tg-RE(TRE, n=7). The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. After then, the cognitive function was measured by using the water maze test, and Aβ metabolism-related proteins, neuronal cell death, and SIRT1/PGC-1α pathway were also measured. Here, we found escape latency and time were significantly increased in the TC compared to the NTC group, but it was significantly reduced in the TRE group, indicating RE may ameliorate cognitive dysfunction. Next, we found an increased in Aβ protein of TC compared to NTC, but it was significantly reduced in the TRE group following RE. In neuronal cell death, Bcl-2 was also significantly decreased and Bax was significantly increased in the TC compared to the NTC group, but RE can increase Bcl-2 and reduce Bax, which may elevate the ratio of Bcl-2/Bax. We further found a decrease in the level of ADAM10 and RARβ protein was significantly increased whereas increased in ROCK1 and BACE1 expression level was significantly reduced following RE in the TRE compared to the TC group. In addition, the level of SIRT1/PGC-1α proteins was decreased in the TC group compared to NTC group, but, these markers were significantly increased in the TRE group following RE. Therefore, our finding indicated that RE may ameliorate cognitive deficits by reducing Aβ protein and neuronal cell death via regulating SIRT1/PGC-1α, amyloidogenic pathway, and non-amyloidogenic pathway, which may play a role in an effective strategy for AD.

Acupuncture at GB34 modulates laminin expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine를 이용한 파킨슨병 생쥐 모델에서의 laminin 발현에 대한 양릉천 자침의 조절효과)

  • Kim, Youn-Jung;Kim, Bum-Shik;Park, Hi-Joon
    • Korean Journal of Acupuncture
    • /
    • v.25 no.1
    • /
    • pp.155-164
    • /
    • 2008
  • 목 적 : 본 연구의 목적은 양릉천 침 처치 시 C57BL/6 생쥐의 중뇌 흑질에 위치한 도파민성 신경세포 사멸 억제 효과를 조직화학 염색법을 이용하여 Tyrosine hydroxylase(TH)와 laminin의 발현으로 관찰하고자 한다. 실험방법 : 실험에 이용한 동물은 C57BL/6 생쥐로, 매일 25mg/kg의 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)를 5일간 주사하였고, 매일 MPTP 주사한 뒤 2시간 후에 양릉천에 침치료를 시행하였으며 MPTP 주사를 종료한 뒤 침치료는 7일동안 계속 시행하였다. 마지막 MPTP 주사 7일 후에 동물을 희생하여 뇌를 적출하고 고정하였다. 침효과를 확인하기 위해 Thyrosine hydroxylase(TH), laminin의 발현 변화 정도를 조직염색화학법으로 이용하여 확인하였다. 각 그룹간의 유의성 검증은 one-way ANOVA를 이용하였다. 결 과 : 도파민성 신경세포 선택적인 신경독소인 MPTP에 대한 양릉천 침처치에 의한 신경보호 효과를 도파민신경세포의 표지자인 TH 발현을 면역화학조직염색법으로 관찰하였다. 대조군에 비해 MPTP 처치 군의 신경세포 사멸이 유의적으로 감소하였고(P <0.05), MPTP + 침처치 군에서 증가되는 양상을 확인하였다 (P <0.05). 또한 도파민성 신경세포내에 존재하는 laminin의 발현정도 역시 대조군보다 MPTP 처치 군에서 유의적으로 감소하였고, MPTP + 침처치 군에서 증가되는 양상을 확인하였다 (P <0.05). 결 론 : MPTP에 의한 도파민성 신경세포 손상에 대한 양릉천 침처치의 신경보호 효과는 세포외 기질중의 하나인 laminin의 발현 정도를 조절하여 비롯되는 것으로 사료된다.

  • PDF

Phosphodiesterase III Inhibitor Cilostazol Protects Amyloid β-Induced Neuronal Cell Injury via Peroxisome Proliferator-Activated Receptor-γ Activation (Amyloid β에 의해 유도된 신경세포 손상에 대한 phosphodiesterase III inhibitor인 cilostazol의 신경보호 효과)

  • Park, Sun-Haeng;Kim, Ji-Hyun;Bae, Sun-Sik;Hong, Ki-Whan;Choi, Byung-Tae;Shin, Hwa-Kyoung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.647-655
    • /
    • 2011
  • The neurotoxicity of aggregated amyloid ${\beta}$ ($A{\beta}$) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of apoptosis to neuron. Here, we investigated the neuroprotective effects of cilostazol, which acts as a phosphodiesterase III inhibitor, on $A{\beta}_{25-35}$-induced cytotoxicity in mouse neuronal cells and cognitive decline in the C57BL/6J AD mouse model via peroxisome proliferator-activated receptor (PPAR)-${\gamma}$ activation. $A{\beta}_{25-35}$ significantly reduced cell viability and increased the number of apoptotic-like cells. Cilostazol treatment recovered cells from $A{\beta}$-induced cell death as well as rosiglitazone, a PPAR-${\gamma}$ activator. These effects were suppressed by GW9662, an antagonist of PPAR-${\gamma}$ activity, indicative of a PPAR-${\gamma}$-mediated signaling. In addition, cilostazol and rosiglitazone also restored PPAR-${\gamma}$ activity levels that had been altered as a result of $A{\beta}_{25-35}$ treatment, which were antagonized by GW9662. Furthermore, cilostazol also markedly decreased the number of apoptotic-like cells and decreased the Bax/Bcl-2 ratio. Intracerebroventricular injection of $A{\beta}_{25-35}$ in C57BL/6J mice resulted in impaired cognitive function. Oral administration of cilostazol (20 mg/kg) for 2 weeks before $A{\beta}_{25-35}$ injection and once a day for 4 weeks post-surgery almost completely prevented the $A{\beta}_{25-35}$-induced cognitive deficits, as did rosiglitazone. Taken together, our findings suggest that cilostazol could attenuate $A{\beta}_{25-35}$-induced neuronal cell injury and apoptosis as well as promote the survival of neuronal cells, subsequently improving cognitive decline in AD, partly because of PPAR-${\gamma}$ activation. The phosphodiesterase III inhibitor cilostazol may be the basis of a novel strategy for the therapy of AD.

Studies on Molecular Plasticity of Bergmann Glia following Purkinje Cell Degeneration (조롱박신경세포의 변성에 따른 버그만아교세포의 면역조직학적 연구)

  • Yoon, Chul-Jong;Cho, Sa-Sun;Lee, Ha-Kyu;Park, Min-Chul
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.165-176
    • /
    • 2005
  • Studies on molecular plasticity of Bermann glia (BG) after harmaline-induced Purkinje cell (PC) degeneration in the rat cerebellum. The intimate structural relationship between BG and PC, evidenced by the sheathing of the PC dendrites by veil-like process from the BG has been suggestive of the close functional relationship between these two cell types. However, little is known about metabolic couplings between these cells. This study designed to investigate molecular plasticity of BG in the rat cerebellum in which PCs were chemically ablated by harmaline treatment. Immunohistochemical examination reveals that harmaline induced PC degeneration causes a marked glial reaction in the cerebellum with activated BG and microglia aligned in parasagittal stripes within the vermis. In these strips, activated BG were associated with upregulaion of metallotheionein, while GLAST and was down regulated, as compared with nearby intact area where both BG are in contact with PCs. The data from this study demonstrate that BG can change their phenotypic expression when BG loose their contact with PCs. It is conceivable that activated BG may upregulate structural proteins, metallothionein expression to use for their proliferation and hypertrophy; metallothionein expression to cope with oxidative stress induced by PC degeneration and microglial activation. On the contrary, BG may down regulated expression of GLAST because sustained loss of contact with PCs would eliminate the necessity for the cellular machinery involved glutamate metabolism. In conclusion, BG might respond man to death of PCs by undergoing a change in metabolic state. It seems possible that signaling molecules released from PCs regulates the phenotype expression of BG. Also ultrastructures in the organelles of normal PC and BG are distinguished by mitochondrial appearance, and distributed vesicles at the synaptic area in the cytoplasm.

Neuroprotective and Anti-inflammatory Effects of Bee Venom Acupuncture on MPTP-induced Mouse (MPTP 유발 파킨슨병 동물 모델에 대한 봉독약침의 신경보호 효과 및 항염증 효과)

  • Park, Won;Kim, Jae-Kyu;Kim, Jong-In;Choi, Do-Young;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.27 no.3
    • /
    • pp.105-116
    • /
    • 2010
  • 목적 : 이 연구는 MPTP 유발 파킨슨병 동물 모델에서 봉독약침의 신경보호 효과 및 항염증 효과를 확인하기 위해 시행되었다. 방법 : C57BL/6 mice에 신경독소인 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)를 하루에 2시간 간격으로 MPTP-HCl(20mg/kg per dose)을 4번 복강 내 주입하여 중뇌 흑질의 도파민 신경세포를 파괴한 파킨슨병 동물 모델을 유발하였다. 실험군은 MPTP군, MPTP 현종 BVA군, MPTP 곡지 BVA군, MPTP 신수 BVA군의 4군으로 하였다. 마지막 MPTP 투여 2시간 후에 1차로 봉독약침을 시술하고, 그 후 48시간 간격으로 총 5차 연속 시술하였다. 봉독약침액의 농도는 0.2mg/Kg으로 하였고, 경혈은 양측 현종($GB_{39}$), 곡지($LI_{11}$), 신수($BL_{23}$)를 사용했고, 주입량은 각 경혈당 양측으로 각 $20{\mu\ell}$씩 주입하였다. 항염증작용을 알아보기 위해 TH, MAC-1, iNOS HSP70을, 세포사멸에 대한 신경세포의 보호효과를 알아보기 위해 caspase-3을 면역조직화학법을 사용하여 실시하였다. 결과 : 실험 결과 MPTP 유발 파킨슨병 동물 모델에서 현종 곡지 신수혈에 대한 봉독약침은 TH-Immunoreactivity neuron의 감소와 microglial activation을 억제하였다. 봉독약침군 모두 효과를 보였으나 그 중 현종과 신수혈에서 특히 억제작용이 컸다. MAC-1에서는 현종혈이 억제작용이 컸다. HSP70-IR neuron은 곡지에서 유의한 억제작용을 보였으나, iNOS neuron은 모든 군에서 유의한 차이를 보이지 않았다. 또한 세포사멸억제여부 실험에서 봉독약침은 모두 억제작용을 보였으나 특히 곡지자침군에서 caspase-3 발현을 유의하게 억제하였다. 결론 : 이러한 결과는 봉독약침이 MPTP 투여로 인한 중뇌 흑질의 염증에 의한 도파민 신경세포 손상을, 염증을 억제함으로써 항염 효과를 나타냄을 알 수 있으며, 신경세포를 보호하는 활성이 있음을 보여줌과 동시에 세포사멸을 억제하는 활성이 있다고 사료된다.

Effect of treadmill exercise on apoptosis in the retinas of streptozotocin-induced diabetic rats (트레드밀 운동이 streptozotocin에 의해 유발된 당뇨 쥐의 망막 신경세포 사멸에 미치는 영향)

  • Kim, D.Y.;Jung, S.Y.;Kim, T.W.;Sung, Y.H.
    • Exercise Science
    • /
    • v.21 no.3
    • /
    • pp.289-298
    • /
    • 2012
  • In the present study, we investigated the effect of treadmill exercise on apoptotic neuronal cell death in the retinas of streptozotocin-induced diabetic rats. Twenty-eight male Sprague-Dawley rats were used for this study. The animals were divided into four groups(n = 7 in each group):(1) control group, (2) exercise group, (3) diabetes-induced group, (4) diabetes-induced and exercise group. Diabetes mellitus(DM) was induced by intraperitoneal injection of streptozotocin. The rats in the exercise groups were forced to run on the treadmill for 30 minutes once a day, five times per a week, during 12 weeks. In this study, a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay and western blot for the expressions of caspase-3, cytochrome c, Bax, and Bcl-2 in the retinas were conducted for the detection of apoptotic retinal cell death. The present results showed that the number of TUNEL-positive cells was increased in the retinas of the diabetic rats, whereas treadmill exercise suppressed this number. The expressions of pro-apoptotic factors caspase-3, cytochrome c, and Bax were enhanced and the expressions of anti-apoptotic factor Bcl-2 was decreased in the retinas of the diabetic rats. In contrast, treadmill exercise suppressed the expressions of caspase-3, cytochrome c, and Bax and increased the expression of Bcl-2. The present study demonstrated that treadmill exercise suppressed diabetes-induced apoptotic neuronal cell death in the retinas. Based on the present results, treadmill exercise may be effective therapeutic strategy for the alleviating complications of diabetes patients.

Pretreatment of curcumin protects hippocampal neurons against excitotoxin-induced cell death (Curcumin의 전처리는 excitotoxin에 의한 세포사멸로부터 해마신경세포를 보호)

  • Kim, So-Jung;Kim, Keun-Ho;Kong, Kyoung-Hye;Lee, Jae-Won
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.12-17
    • /
    • 2007
  • Curcumin is a natural phenolic yellow curry spice, derived from the tumeric, which has been used for the treatment of diseases associated with oxidative stress and inflammation. Curcumin is known to have both anti-oxidative and anti-inflammatory properties. These properties can be beneficial to protect the brain from the neurodegenerative diseases. We now report the neuroprotective effects of curcumin pretreatment in primary hippocampal neurons to glutamate-induced excitotoxicity. Pretreatment of embryonic mouse hippocampal cell cultures with low does of curcumin protected neurons against glutamate-induced death, however, this neuroprotection was not correlated with the modulation of oxidative stress. Interestingly, high dose of curcumin showed the cytotoxicity in primary cultured hippocampal neurons. Immunoblot analyses showed that levels of stress response. protein HSP70 were significantly elevated in neurons exposed to low dose of curcumin, whereas levels of cleaved PARP were increased in neurons exposed to high dose of curcumin. These findings show that curcumin can modulate neuronal responses to glutamate, and suggest possible use of curcumin and related compounds in the prevention and/or treatment of neurodegenerative disorders.

Ghrelin Attenuates Dexamethasone-induced T-cell Apoptosis by Suppression of the Glucocorticoid Receptor (덱사메타손에 의해 유발된 흉선 T세포사멸에 대한 그렐린의 세포사멸억제효과)

  • Lee, Jun Ho
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1356-1363
    • /
    • 2014
  • Ghrelin is a 28 amino acid orexigenic peptide hormone that is secreted predominantly by tX/A cells in the stomach, and it plays a major role in energy homeostasis. Activated ghrelin has an n-octanoyl group covalently linked to the hydroxyl group of the Ser3 residue, which is critical for its binding to the G-protein coupled growth hormone secretagogue receptor-1a (GHS-R1a). According to recent reports, both ghrelin and its receptor, GHS-R1a, are expressed by a variety of immune cells, including T- and B-lymphocytes, monocytes, and dendritic cells, and ghrelin stimulation of leukocytes provides a potent immunomodulatory signal controlling systemic and age-associated inflammation and thymic involution. Here, we report that ghrelin protected murine thymocytes from dexamethasone (DEX)-induced cell death both in vivo and in vitro. Subsequently, we explored the molecular mechanisms of the antiapoptotic effect of ghrelin. According to our experiments, ghrelin inhibited the expression of proapoptotic proteins via the regulation of glucocorticoid receptor (GR) phosphorylation. As a result, ghrelin inhibited the proapoptotic activation of proteins, such as Caspase-3, PARP, and Bim. These data suggest that ghrelin, through GHS-R, inhibits the pathway to apoptosis by regulation of the proapoptotic protein activation signal pathway. They provide evidence that blocking apoptosis is an essential function of ghrelin during the development of thymocytes.

The role of p62 in ceramide induced neuronal cell death (Ceramide에 의한 신경세포 사멸과정에서 p62의 역할)

  • Joung, In-Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.648-653
    • /
    • 2009
  • p62 is a key component of protein aggregates found in brains of neurodegenerative diseases in which oxidative stress is involved in the pathogenesis. p62 was induced in SH-SY5Y, a neuroblastoma cell line, by hydroxydoparnine or $C_2-ceramide$ known to be related to neurodegenerative diseases. The over-expression of p62 showed the neuroprotective effect against the ceramide induced cell death. In addition, p62 became insoluble and cleaved forms as time proceeded after the ceramide treatment, suggesting the mechanism by which p62 is associated with aggregates in neurodegenerative diseases.