• Title/Summary/Keyword: 신경망 분류기

Search Result 324, Processing Time 0.03 seconds

Development of Artificial-Intelligent Power Quality Diagnosis Algorithm using DSP (DSP를 이용한 인공지능형 전력품질 진단기법 연구)

  • Chung, Gyo-Gbum;Kwack, Sun-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-124
    • /
    • 2009
  • This paper proposes a new Artificial-Intelligent(AI) Power Quality(PQ) diagnosis algorithm using Discrete Wavelet Transform(DWT), Fast Fourier Transform(FFT), Root-Mean-Square(RMS) value. The developed algorithm is able to detect and classify the PQ problems such as the transient, the voltage sag, the voltage swell, the voltage interruption and the total harmonics distortion. The 15.36[kHz] sampling frequency is used to measure the voltages in a power system. The measured signals are used for DWT, FFT, RMS calculation. For AI diagnosis of the PQ problems, a simple multi-layered Artificial Neural Network(ANN) with the back-propagation algorithm is adopted, programmed in C++ and tested in PSIM simulation studies. Finally, the algorithm, which is installed in MP PQ+256 with TI DSP320C6713, is proved to diagnose the PQ problems efficiently.

A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid (전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법)

  • Lee, DongHwi;Kim, Young-Dae;Park, Woo-Bin;Kim, Joon-Seok;Kang, Seung-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.311-316
    • /
    • 2016
  • Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.

A Pedestrian Detection Method using Deep Neural Network (심층 신경망을 이용한 보행자 검출 방법)

  • Song, Su Ho;Hyeon, Hun Beom;Lee, Hyun
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • Pedestrian detection, an important component of autonomous driving and driving assistant system, has been extensively studied for many years. In particular, image based pedestrian detection methods such as Hierarchical classifier or HOG and, deep models such as ConvNet are well studied. The evaluation score has increased by the various methods. However, pedestrian detection requires high sensitivity to errors, since small error can lead to life or death problems. Consequently, further reduction in pedestrian detection error rate of autonomous systems is required. We proposed a new method to detect pedestrians and reduce the error rate by using the Faster R-CNN with new developed pedestrian training data sets. Finally, we compared the proposed method with the previous models, in order to show the improvement of our method.

Improving Learning Performance of Support Vector Machine using the Kernel Relaxation and the Dynamic Momentum (Kernel Relaxation과 동적 모멘트를 조합한 Support Vector Machine의 학습 성능 향상)

  • Kim, Eun-Mi;Lee, Bae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.735-744
    • /
    • 2002
  • This paper proposes learning performance improvement of support vector machine using the kernel relaxation and the dynamic momentum. The dynamic momentum is reflected to different momentum according to current state. While static momentum is equally influenced on the whole, the proposed dynamic momentum algorithm can control to the convergence rate and performance according to the change of the dynamic momentum by training. The proposed algorithm has been applied to the kernel relaxation as the new sequential learning method of support vector machine presented recently. The proposed algorithm has been applied to the SONAR data which is used to the standard classification problems for evaluating neural network. The simulation results of proposed algorithm have better the convergence rate and performance than those using kernel relaxation and static momentum, respectively.

Steganalysis Using Joint Moment of Wavelet Subbands (웨이블렛 부밴드의 조인트 모멘트를 이용한 스테그분석)

  • Park, Tae-Hee;Hyun, Seung-Hwa;Kim, Jae-Ho;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.71-78
    • /
    • 2011
  • This paper propose image steganalysis scheme based on independence between parent and child subband on the multi-layer wavelet domain. The proposed method decompose cover and stego images into 12 subbands by applying 3-level Haar UWT(Undecimated Wavelet Transform), analyze statistical independency between parent and child subband. Because this independency is appeared more difference in stego image than in cover image, we can use it as feature to differenciate between cover and stego image. Therefore we extract 72D features by calculation first 3 order statistical moments from joint characteristic function between parent and child subband. Multi-layer perceptron(MLP) is applied as classifier to discriminate between cover and stego image. We test the performance of proposed scheme over various embedding rates by the LSB, SS, BSS embedding method. The proposed scheme outperforms the previous schemes in detection rate to existence of hidden message as well as exactness of discrimination.

Automatic Film Line Scratch Removal System using Spatial Information (공간 정보를 이용한 오래된 필름에서의 스크래치 제거 시스템)

  • Ko, Eun-Jeong;Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.162-169
    • /
    • 2008
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each regions. It has gained increasing attention by many researchers, to support multimedia service of high quality. Among artifacts, scratch is the most frequent degradation. In this paper, an automatic film line scratch removal system is developed that can detect and restore all kind of scratches. For this we use the spatial information of scratches: The scratch in old films has lower or higher brightness than neighboring pixels in its vicinity and usually appears as a vertically long thin line. Our systems consists of scratch detection and scratch restoration. The scratches of various types are detected by neural network based texture classifier and morphology-based shape filter and then the degraded regions are restored using bilinear interpolation. To assess the validity of the Proposed method, it has been tested with all kinds of scratches, and then experimental results show that the proposed approach is robust to various scratches and efficient to apply a real film removal system.

A deep learning method for the automatic modulation recognition of received radio signals (수신된 전파신호의 자동 변조 인식을 위한 딥러닝 방법론)

  • Kim, Hanjin;Kim, Hyeockjin;Je, Junho;Kim, Kyungsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1275-1281
    • /
    • 2019
  • The automatic modulation recognition of a radio signal is a major task of an intelligent receiver, with various civilian and military applications. In this paper, we propose a method to recognize the modulation of radio signals in wireless communication based on the deep neural network. We classify the modulation pattern of radio signal by using the LSTM model, which can catch the long-term pattern for the sequential data as the input data of the deep neural network. The amplitude and phase of the modulated signal, the in-phase carrier, and the quadrature-phase carrier are used as input data in the LSTM model. In order to verify the performance of the proposed learning method, we use a large dataset for training and test, including the ten types of modulation signal under various signal-to-noise ratios.

Research on development of electroencephalography Measurement and Processing system (뇌전도 측정 및 처리 시스템 개발에 관한 연구)

  • Doo-hyun Lee;Yu-jun Oh;Jin-hee Hong;Jun-su chae;Young-gyu Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2024
  • In general, EEG signal analysis has been the subject of several studies due to its ability to provide an objective mode of recording brain stimulation, which is widely used in brain-computer interface research with applications in medical diagnosis and rehabilitation engineering. In this study, we developed EEG reception hardware to measure electroencephalograms and implemented a processing system, classifying it into server and data processing. It was conducted as an intermediate-stage research on the implementation of a brain-computer interface using electroencephalograms, and was implemented in the form of predicting the user's arm movements according to measured electroencephalogram data. Electroencephalogram measurements were performed using input from four electrodes through an analog-to-digital converter. After sending this to the server through a communication process, we designed and implemented a system flow in which the server classifies the electroencephalogram input using a convolutional neural network model and displays the results on the user terminal.

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.