• 제목/요약/키워드: 신경망 모델링

검색결과 333건 처리시간 0.025초

HMM 기반의 오프라인 필기 모델 (Off-line Character Modeling using HMM)

  • 신봉기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.337-340
    • /
    • 2000
  • 음성 인식 및 온라인 필기 인식기 모델로 널리 알려진 은닉 마르코프 모델(HMM)을 오프라인에 적용하려는 시도는 있었지만 아직까지 만족할 만한 성과는 찾아보기 어렵고 인식률도 신경망 등 다른 방법에 의한 시스템에 미치지 못하는 실정이다. 본 연구에서는 온라인 필기 모델 HMM을 오프라인 필기인식에 활용하는 방법 한 가지와 순수하게 오프라인 필기 모델로서 제안된 2D HMM을 기술한다. 두 방법 모두 기존의 HMM 모델링 틀에 기초를 두고 개발하였으며 다양한 국소 변형을 해석하기 위해 동적 계획법에 기반한 알고리즘을 응용하였다. 본 논문에서는 두 가지 독립적인 아이디어 제안에 의의를 두었으며 주요 아이디어만을 간략하게 기술하였다.

  • PDF

항타말뚝의 지지력 예측을 위한 최적의 인공신경망모델에 관한 연구 (A Study on Optimized Artificial Neural Network Model for the Prediction of Bearing Capacity of Driven Piles)

  • 박현일;석정우;황대진;조천환
    • 한국지반공학회논문집
    • /
    • 제22권6호
    • /
    • pp.15-26
    • /
    • 2006
  • 말뚝의 지지력과 거동을 예측하기 위하여 다양한 연구들이 수행되었음에도 불구하고, 메커니즘에 대한 전반적인 이해가 아직까지 미흡한 실정이다. 이는 많은 인자들이 서로 복잡한 연관성을 맺으며 말뚝의 거동에 영향을 미치기 때문이다. 따라서 지반조건과 말뚝조건 및 항타조건 등 과 관련된 많은 인자들 가운데 지지력에 중요한 영향을 미치는 인자들을 도출하기 어려우며, 또한 인자들 간의 복잡한 연관성을 지지력 공식에 적합하게 고려하기란 매우 어렵다. 본 연구에서는 항타말뚝들에 대한 동재하시험으로부터 선단 및 주면 지지력을 포함한 지지력을 예측하기 위하여 인공신경망이 적용되었다. 첫째로, 신경망 모델링에 근거한 민감도 분석를 통하여 지지력에 대한 각 영향인자들의 영향이 검토되었다. 둘째로, 지지력 예측을 위한 최적의 인공신경망 모델을 도출하기 위하여 인공신경망과 유전자 알고리즘으로 구성된 설계기법이 적용되었다. 이를 통해 토사지반에 관입된 항타말뚝의 지지력을 산정할 수 있는 최적의 인공신경망 모델을 제안하고자 하였다. 사용된 설계기법을 통하여 적합한 입력층 조합, 은닉층 노드수과 각 층 사이의 연결구조를 도출하였다. 도출된 인공신경망 모델을 적용함으로써 항타말뚝의 지지력을 간단하며 신뢰성 있게 예측할 수 있음을 알 수 있다.

외란관측기와 신경 회로망을 이용한 자동문 시스템의 안전성 개선 (Safety Improvement of an Automatic Door System Using a Disturbance Observer and Neural Network)

  • 유영동;이교범;홍석교
    • 전력전자학회논문지
    • /
    • 제15권5호
    • /
    • pp.401-410
    • /
    • 2010
  • 편리성 및 방범의 용도로 사용이 늘어나고 있는 일반 자동문에서 출입자의 충돌이나 끼임 사고 같은 안전사고가 발생하고 있다. 본 논문은 출입문으로 사용되고 있는 자동문의 안전성 개선에 관한 것으로, 기존의 외부 안전 센서들을 보완하는 방법을 제안하고자 한다. 자동문 모델링을 통해 외란 관측기를 설계하고, 신경 회로망을 설계하여 관측된 외란과 신경 회로망의 출력의 오차를 비교하는 알고리즘을 제시한다. 제안된 기법의 타당성과 유효성을 실험을 통해 증명한다. 본 논문에서 제안한 방법으로 자동문의 안전성을 높여줄 수 있을 것으로 기대된다.

심층신경망 기반의 프리코딩 시스템을 활용한 다중사용자 스케줄링 기법에 관한 연구 (MU-MIMO Scheduling using DNN-based Precoder with Limited Feedback)

  • 공경보;민문식
    • 방송공학회논문지
    • /
    • 제28권1호
    • /
    • pp.141-144
    • /
    • 2023
  • 최근에 심층신경망(DNN)을 활용하여 채널 추정, 채널 양자화, 피드백, 프리코딩 과정을 통합하여 모델링하는 연구가 진행되었다. 해당연구는 기존에 이론적으로 어렵던 통합 최적화를 deep learning (DL)을 기반으로 수행하여 기존의 실제 codebook을 활용하는 프리코딩기법에 비해 높은 잠재력이 있음을 보였다. 하지만 기존의 기법은 랜덤하게 정해진 소수의 사용자만을 대상으로하며, 기존의 기법과 다르게 스케줄링이 포함된 환경에는 적응이 어렵다. 따라서 본 연구에서는 심층신경망기반의 프리코딩기법이 활용가능한 스케줄링 방식을 연구하여 기존의 결과와 비교한다.

다양한 재해분석을 위한 AI 기술적용 사례 소개 (Application of AI technology for various disaster analysis)

  • 이기하;레수안히엔;응웬반지앙;응웬반린;정성호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2023
  • 최근 재해분야에서 인공신경망(ANN), 기계학습(ML), 딥러닝(DL) 등 AI 기술이 활용성이 점차 증가하고 있으며, 센싱정보와 연계한 시설물 안전관리, 원격탐사와 연계한 재해감시(녹조, 산사태, 산불 등), 수문시계열(수위, 유량 등) 예측, 레이더·위성강수 자료의 보정과 예측, 상하수도 관망누수예측 등 다양한 분야에서 AI 기술이 적용되고 그 활용성이 검증된 바 있다. 본 연구에서는 ML, DL, 물리기반신경망(Pysics-informed Neural Networks, PINNs)을 이용한 다양한 재해분석 사례를 소개하고, 그 활용성과 한계에 대해서 논의하고자 한다. 주요사례로는 (1) SAR영상과 기계학습을 이용한 재해피해지역(울진 산불) 감지, (2) 국가 디지털 정보를 이용한 산사태 위험지역 판별(인제 산사태) (3) 기계학습 및 딥러닝 기법을 이용한 위성강수 자료의 보정·예측 및 유출해석, (4) 수리해석을 위한 수치해석분야에서의 PINNs의 적용성(1차원 Saint-Venant 식 해석) 평가 연구결과를 공유한다. 특히, 자료의 입·출력 자료만으로 학습된 인공신경망 모형 대신 지배방정식(물리방정식)을 만족하도록 강제한 PINNs의 경우, 인공신경망 모형보다 우수한 모의능력을 보여주었으며, 향후 복잡한 수리모델링 등 수치해석분야에서 그 활용가능성이 매우 높을 것으로 판단된다.

  • PDF

인공신경망을 이용한 대대전투간 작전지속능력 예측 (A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network)

  • 심홍기;김승권
    • 지능정보연구
    • /
    • 제14권3호
    • /
    • pp.25-39
    • /
    • 2008
  • 본 연구는 인공신경망을 이용하여 대대급 방어 작전에서 임의시점에서의 작전지속능력을 예측하는 데 있다. 전투결과에 대한 수학적 모델링은 이를 위한 많은 요인들이 가지는 시?공간적 가변성으로 인해 전투력을 평가하는데 많은 문제점이 있었다. 따라서 이번 연구에서는 대대 전투지휘훈련간 각 부대의 생존률을 전방향 다층 신경망(Feed-Forward Multilayer Perceptrons, MLP)과 일반 회귀신경망(General Regression Neural Network, GRNN)모형에 적용하여 임무달성 여부를 예측하였다. 실험 결과 매개변수들의 비선형적인 관계에도 불구하고 각각 82.62%, 85.48%의 적중률을 보여 일반회귀신경망 모형이 지휘관이 상황을 인식하고 예비대 투입 우선순위 선정 등 실시간 지휘결심을 하는데 도움을 줄 수 있는 방법임을 보여준다.

  • PDF

딥러닝을 이용한 잠수교 수위예측 (Prediction of Water Level using Deep-Learning in Jamsu Bridge)

  • 정성호;이대업;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.135-135
    • /
    • 2018
  • 한강의 잠수교는 평상시에는 사람과 차의 통행이 가능하나 예측수위가 5.5m일 경우, 보행자통제, 6.2m일 경우, 차량통제를 실시한다. 잠수교는 국토교통부의 홍수예보 지점은 아니지만 그 특수성으로 인해 정확한 홍수위 예측을 통해 선행시간을 확보할 필요가 있다. 일반적으로 하천 홍수위 예측을 위해서는 강우-유출 모형과 하도추적을 위한 수리모형을 결합한 모델링이 요구되나 잠수교는 하류부 조위로 인한 배수 및 상류부 팔당댐 방류량의 영향을 받아 물리적 수리 수문모형의 구축이 상당히 제약적이다. 이에 본 연구에서는 딥러닝 오픈 라이브러리인 Tensorflow 기반의 LSTM 심층신경망(Deep Neural Network) 모형을 구축하여 잠수교의 수위예측을 수행한다. LSTM 모형의 학습과 검증을 위해 2011년부터 2017년까지의 10분단위의 잠수교 수위자료, 팔당댐의 방류량과 월곶관측소의 조위자료를 수집한 후, 2011년부터 2016년까지의 자료는 신경망 학습, 2017년 자료를 이용하여 학습된 모형을 검증하였다. 민감도 분석을 통해 LSTM 모형의 최적 매개변수를 추정하고, 이를 기반으로 선행시간(lead time) 1시간, 3시간, 6시간, 9시간, 12시간, 24시간에 대한 잠수교 수위를 예측하였다. LSTM을 이용한 1~6시간 선행시간에 대한 수위예측의 경우, 모형평가 지수 NSE(Nash-Sutcliffe Efficiency)가 1시간(0.99), 3시간(0.97), 6시간(0.93)과 같이 정확도가 매우 우수한 것으로 분석되었으며, 9시간, 12시간, 24시간의 경우, 각각 0.85, 0.82, 0.74로 선행시간이 길어질수록 심층신경망의 예측능력이 저하되는 것으로 나타났다. 하천수위 또는 유량과 같은 수문시계열 분석이 목적일 경우, 종속변수에 영향을 미칠 수 있는 가용한 모든 독립변수를 데이터화하여 선행 정보를 장기적으로 기억하고, 이를 예측에 반영하는 LSTM 심층신경망 모형은 수리 수문모형 구축이 제약적인 경우, 홍수예보를 위한 활용이 가능할 것으로 판단된다.

  • PDF

NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어 (Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil)

  • 백지혜;박수형
    • 한국항공우주학회지
    • /
    • 제49권9호
    • /
    • pp.729-738
    • /
    • 2021
  • 본 연구에서는 실속 받음각 근처에 발생하는 익형 위의 유동박리를 억제하기 위하여 인공신경망 기반의 피드백 유동제어를 NACA0015 익형에 수치적으로 적용하였다. 익형 위 박리영역 크기의 축소화라는 제어 목표를 달성하기 위해 익형의 박리 지점 근처에 인위적 외란(Blowing & Suction) 제어 신호를 적용하였다. 유동의 운동을 나타내는 시스템 모델링 단계에서 압력데이터에 적합직교분해(Proper Orthogonal Decomposition)를 적용하여 유동제어에 필요한 운동 모드를 추출하고 유동의 특성을 분석하였다. 분해된 모드를 기반으로 NARX(Nonlinear AutoRegressive Exogenous) 구조의 인공 신경망을 학습하여 유동의 운동을 나타내도록 하였으며, 최종적으로 피드백 제어루프에 작동시켰다. 예측된 제어신호를 CFD 해석에 적용하였으며 제어 유/무에 따른 공력특성을 분석하고 익형 주변의 고유 공간모드의 변화를 비교하여 제어 효과를 분석하였다. 본 연구에서 진행된 피드백 제어는 약 29%의 압력항력 감소효과를 보여주었으며, 이는 익형 뒷전의 큰 압력회복으로 인해 나타나는 것을 확인하였다.

NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구 (A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction)

  • 오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.46-54
    • /
    • 2006
  • 최근 각종 온라인 상거래 및 개인 신분카드 이용이 늘어나면서 개인 인증의 중요성이 부각되고 있다. RFID(Radio Frequency Identification) tag가 내장된 개인 신분 카드가 점차 증가하고 있지만, 본인의 인증을 할 수 있는 방법이 미비하기 때문에, 자동화 할 수 있는 대책이 시급하다. RFID tag는 현재 메모리 용량이 매우 작기 때문에, 개인의 생체정보를 저장하기 위해서는 효율적인 특징추출 방법이 필요하며, 저장된 특징들을 비교하기 위해서는 새로운 인식방법이 필요하다. 본 논문에서는 인간의 인지학적인 두뇌 원리인 해마 신경망을 공학적으로 모델링하여 얼굴 영상의 특징 벡터들을 고속 학습하고, 각 영상의 최적의 특정을 구성할 수 있는 해마 신경망 모델링 알고리즘을 이용한 개인생체 인증 시스템에 관한 연구를 수행하였다. 시스템은 크게 NMF(Non-negative Matrix Factorization)와 LDA(Linear Discriminants Analysis) 혼합 알고리즘을 이용한 특징 추출 부분과 해마신경망을 모델링하고 인식 성능을 실험하는 것으로 구성 되어 있다. 제안한 시스템의 성능을 평가하기 위하여 실험은 표정변화와 포즈변화가 포함된 이미지를 각각 구분하여 인식률을 확인하였다. 실험 결과, 본 논문에서 제안하는 특정 추출 방법과 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.

퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링 (Fuzzy Neural System Modeling using Fuzzy Entropy)

  • 박인규
    • 한국멀티미디어학회논문지
    • /
    • 제3권2호
    • /
    • pp.201-208
    • /
    • 2000
  • 이 논문에서는 시계열 예측을 위하여 퍼지 엔트로피에 의한 입력공간의 분할과 퍼지 제어규칙을 자동으로 생성하는 방법을 제안하고, Mackey-Glass 데이터 Set을 이용한 시계열 예측 문제에 적용하여 그 성능을 검증한다. 이 방법은 샤논 함수와 퍼지 엔트로피 함수를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 이력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안되는 알고리즘을 매개변수의 수를 줄이기 위하여 제어 규칙의 결론부의 출력값은 신경망의 가중치로 구성하여 퍼지 신경망의 복잡도를 줄임으로서 추론형과 기술형 접근법을 혼합한 형태의 학습 알고리즘이다.

  • PDF