• 제목/요약/키워드: 신경망 모델링

검색결과 333건 처리시간 0.028초

레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발 (Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function)

  • 박영환
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

웨이브릿 시계열 신경망을 이용한 플라즈마 장비 센서 정보 모델링

  • 김유석;김병환;한정훈;서승훈;손종원
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.72-76
    • /
    • 2006
  • 본 연구에서는 웨이브릿과 신경망을 결합하여 플라즈마 고장을 감시하기 위한 시계열 모델을 개발하였다. 본 기법은 플라즈마 증착장비에 의해 수집된 18 개의 센서정보에 적용하여 평가하였다. 이산치 웨이브릿(Discrete Wavelet Transformation)은 장비에서 수집된 센서정보의 전 처리를 위해 이용되었다. 시계열 모델의 성능은 과거와 미래정보의 함수로 평가하였다. 수집된 18 개의 센서정보에 대한 모델성능 비교를 위해 표준화된 성능평가지표가 적용되었다. 평가결과, 본 기법에 의해 개발된 시계열 모델은 대략 4% 정도의 예측에러를 보였다.

  • PDF

축산폐수처리플랜트를 위한 웹기반 원격관리 및 제어 시스템 (Web-based Remote Management and Control System for the Piggery Wastewater Treatment Plant)

  • 서현용;배현;전병희;김창원;김성신
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.447-450
    • /
    • 2002
  • 본 논문에서는 통합 관리 시스템을 이용하여 현재 김해에 있는 플랜트의 공정상태를 모니터링하고, 퍼지와 신경망을 이용하여 플랜트로부터 얻을 수 있는 데이터를 모델링 함으로써 공정의 상태를 미리 예측이 가능하도록 구성하였다. 이러한 예측된 모델을 이용하여 제어 전략을 설계함으로써 최적화된 제어 파라미터를 찾을 수 있으며, 특히 비정상적으로 들어오는 데이터에 대해서는 플랜트의 공정상태를 진단할 수 있는 가능성을 보이고 있다. 또한 기존의 통합 관리 시스템을 관리자라면 누구나 장소에 구애받지 않고 플랜트의 공정상태를 모니터링 할 수 있도록 웹을 이용하여 개발함으로써 플랜트의 능률성과 효율성 향상 및 인건비 절약 등 플랜트의 효율을 개선시킬 수 있다 즉, 네트워크가 구축되어 있는 곳이면 어디서나 모니터링이 가능하도록 시스템을 설계하였다.

역전파 신경망을 이용한 옷감소재 자동 평가 방법 (An Auto-Evaluation Method of Cloth Material Using Back-Propagation Neural Network)

  • 이상곤;이은우;남양희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.373-376
    • /
    • 2003
  • 의상 애니메이션은 영화나 게임, 의류 전자상거래 동 다양한 분야에서 활용될 수 있는 컴퓨터 그래픽스 분야에서 연구되어왔던 기술이다. 하드웨어의 발달과 빠르고 효율적인 물리학적 모델과 수치적 적분법 등의 등장으로 옷감의 움직임을 모델링 하는 데에 그치지 않고, 더 나아가 실제 옷감처럼 자연스러운 움직임을 얻고자하는 방향으로 연구의 초점이 맞추어졌다. 본 연구에서는 사실적인 의상 애니메이션을 위해 역전파 신경망을 이용하여 실제 옷감소재를 자동으로 평가하는 옷감소재 자동 평가 알고리즘을 제시하고 실험하였다. 실험을 통해 실제 옷감과 유사한 가상 옷감을 생성할 수 있었다.

  • PDF

신경회로망을 사용한 넓은 온도 범위의 증기표 모델링 (Modelling the wide temperature range of steam table using the neural networks)

  • 이태환
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.2008-2013
    • /
    • 2006
  • 열장치의 열성능 평가를 위한 수치 해석에서는 온도, 압력, 체적, 엔탈피, 엔트로피 등의 열 역학적 성질들의 수치 값이 필요하다. 그러나 열역학적 성질들 사이의 관계를 나타내는 증기표는 그대로 이용할 수는 없기 때문에 모델링하여 사용하여야 한다. 본 연구에서는 스플라인 보간법과 비교함으로써, 습포화증기의 모델링에 신경회로망의 적용 가능성을 검토하였다. 다층신경 회로망을 구성하기 위하여 입력층으로 온도에 대한 1개의 노드, 두 개의 은닉층은 각각 10개와 20개의 노드, 출력층은 포화액과 건포화증기에 대한 비체적, 엔탈피, 엔트로피 등의 6개의 노드로 구성하였으며, 스플라인 보간법은 2차 다항식과 3차 다항식을 사용하였다. 소구간으로 구성 된 스플라인 보간법과 비교하여 신경회로망 모델링은 비슷한 백분율 오차를 보여주었으며, 이 결과로부터 넓은 온도 범위의 증기표 모델링에 신경회로망이 아주 강력한 방법임을 확인하였다.

비모수적 기법에 의한 확률론적 저수지 유입량 예측 (Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods)

  • 이한구;김선기;조영현;정구열
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF

계층적 모듈라 신경망을 이용한 이동로봇 지능제어기 (The Intelligent Control System for Biped Robot Using Hierarchical Mixture of Experts)

  • 최우경;하상형;김성주;김용택;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.389-395
    • /
    • 2006
  • 본 논문에서는 지능재어기법을 이용하여 이족로봇 제어기를 설계한다. 이족로봇 제어기는 복잡성을 해결하기 위해 4개 소 그룹으로 모듈화 하고, 이 모듈들은 신경망을 이용한 계층적 모듈라 신경망 (Hierarchical Mixture of Experts; HME) 기법을 도입한다. 그리고 신경망은 직접제어기법으로 이족로봇의 역 동력학을 학습한다. HME는 나무구조의 네트워크로 입출력 집합을 학습하여 출력공간에 대한 입력공간을 재분할하는 능력을 가지고 있다. EM 알고리즘을 이용한 HME는 반복적 학습을 통하여 이족로봇의 동력학을 모델링하며 HME 의 가상오차를 생성하여 이족로봇보행시 안전한 보행을 수행할 수 있는 이족로봇의 제어기를 설계한다.

인공신경망을 기반으로 한 C.G.S 공법의 개량효과 예측시스템 개발 (Development of Improvement Effect Prediction System of C.G.S Method based on Artificial Neural Network)

  • 김정훈;홍종욱;변요셉;정의엽;서석현;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제14권9호
    • /
    • pp.31-37
    • /
    • 2013
  • 본 연구는 C.G.S공법 적용 지반을 설치 직경, 설치 간격, 면적 치환율, 지반강성에 따른 모델링을 실시함으로써 주변 지반의 거동을 파악하고자 하였고, 인공신경망의 매개변수 연구를 통해 본 연구에 가장 적합한 인공신경망 모델을 선정하여 수치해석과 인공신경망 연계를 통한 인공신경망 예측 모델을 개발하였다. 그 결과, C.G.S 말뚝 침하량 및 지반 침하량은 직경, 설치 간격, 면적 치환율, 지반강성 별로 일치하여 하나의 곡선으로 나타났으며, 이는 C.G.S 공법 적용 지반의 거동양상이 일정한 형태로 나타남을 의미하는 것으로, 이러한 결과를 바탕으로 3차원 거동에 대한 인공신경망 학습이 가능한 것으로 파악되었다. 인공신경망의 내적인자 연구 결과, 은닉층 뉴런수 10개, 모멘텀 상수 0.2, 학습률의 경우 0.2를 사용할 경우 입력과 출력간의 관계가 적절히 표현되는 것으로 나타났다. 이러한 인공신경망 모델의 최적구조를 이용하여 C.G.S 공법의 지반 거동을 평가한 결과는 결정계수 값이 C.G.S 말뚝 침하의 경우는 0.8737, 지반 침하의 경우는 0.7339, 지반 융기의 경우는 0.7212로 나타나 충분한 신뢰도를 보이고 있음을 알수 있었다.

고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법 (Load Modeling Method Based on Radial Basis Function Networks Considering of Hormonic components)

  • 지평식;이대종;이종필;임재윤
    • 조명전기설비학회논문지
    • /
    • 제22권4호
    • /
    • pp.46-53
    • /
    • 2008
  • 본 연구에서는 고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법을 개발하였다. 개발된 부하모델은 입력정보로서 기본 주파수와 기본 전압 외에 고조파 성분도 고려하여 전압 및 주파수뿐만 아니라 고조파의 영향에 대해서도 효과적으로 부하를 추정할 수 있도록 구성하였다. 부하모델링을 위해 적용된 방사기저함수 네트워크는 기존에 널리 사용되는 다층 신경망에 비해 구조가 간단하고 수렴속도가 빠른 장점을 지니고 있다. 개발된 부하모델링 기법은 기존에 널리 사용되는 다항식과 다층 신경회로망 및 고조파 성분을 고려하지 않은 방사기저함수 네트워크를 이용한 부하모델 기법과 비교함으로써 제안방법의 타당성을 검증하였다.

인공지능 기반 온실 환경인자의 시간영역 추정 (A Research about Time Domain Estimation Method for Greenhouse Environmental Factors based on Artificial Intelligence)

  • 이정규;오종우;조용진;이동훈
    • 생물환경조절학회지
    • /
    • 제29권3호
    • /
    • pp.277-284
    • /
    • 2020
  • 스마트 팜 관리의 활용 효율성을 높이기 위해서는 작물 및 환경 변화에 대한 사전 검사를 실시간으로 평가하기 위한 모델링 기법이 필요하다. 시설 온실 내부의 CO2와 같은 필수 환경 요소는 다양한 상관 변수가 밀접하게 결합 된 시간 영역에서 신뢰할 수 있는 추정 모델을 확립하기가 어렵다. 따라서 본 연구는 입력 영역과 출력 변수를 CO2와 같은 시간 관점에서 인접 영역에 분포된 환경 정보를 이용하여 시간 복잡도를 줄이기 위한 인공 신경망을 개발하기 위해 수행되었다. 스마트 팜을 계측하기 위한 센서 모듈을 통해 환경 요소를 지속적으로 측정하였다. 실험기간의 평균 데이터로 예측하는 모델링 1, 전일 데이터로 예측하는 모델링 2을 구성하여 CO2 환경인자의 상호관계를 예측하였다. 전일의 데이터 학습으로 예측하는 모델링 2가 60일 평균값으로 예측한 모델링 1에 비해 성능이 우수하였다. 30일 이전까지는 대부분 0.70~0.88사이의 결정계수를 보였으며 모델링 2가 약0.05정도 높게 나타났다. 하지만 30일 이후에는 두 가지 모델링 모두 결정 계수 값이 0.50 이하로 낮은 값을 보였다. 모델링 접근법에 따라 결정 요인의 값을 비교하고 분석 한 결과 인접한 시간대의 데이터는 고정 신경망 모델을 사용하는 대신 예측이 필요한 지점에서 상대적으로 높은 성능을 나타냈다.