• 제목/요약/키워드: 신경망 모델링

검색결과 333건 처리시간 0.031초

소스코드 주제를 이용한 인공신경망 기반 경고 분류 방법 (Warning Classification Method Based On Artificial Neural Network Using Topics of Source Code)

  • 이정빈
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권11호
    • /
    • pp.273-280
    • /
    • 2020
  • 자동화된 정적분석 도구는 소스 코드상에 잠재된 결함을 개발자들이 적은 노력으로 빠르게 찾을 수 있도록 도와준다. 하지만 이러한 정적분석 도구는 수정할 필요가 없는 오탐지 경고들을 무수하게 발생시킨다. 본 연구에서는 소스코드 블록의 토픽 모델을 이용한 인공신경망 기반의 경고 분류 기법을 제안한다. 소프트웨어 변경 관리 시스템으로부터 버그를 수정한 리비전들을 수집하고, 개발자들로부터 수정된 코드 블록들을 추출한다. 토픽 모델링을 이용하여 수집된 코드 블록의 토픽 분포 값을 구하고, 코드 블록의 리비전 간 경고들의 삭제 여부를 표현하는 이진데이터를 인공신경망의 입력 값과 출력 값으로 사용하여 심층 학습을 수행한다. 그 결과, 인공신경망 기반의 분류 모델이 높은 예측 성능으로 진성 또는 오탐지 경고를 분류하였다.

구조모델 개선을 위한 정보기반 하이브리드 모델링 기법 (Information-Based Hybrid Modeling Framework on the Systematic use of Artificial Neural-Networks)

  • 김준희
    • 한국전산구조공학회논문집
    • /
    • 제25권4호
    • /
    • pp.363-372
    • /
    • 2012
  • 본 논문에서는 수학적 구조 모델과 인공신경망 기법을 상호 유기적으로 결합하여 구조물의 거동 데이터로부터 부재모델 또는 재료모델의 정확도를 높이는 정보기반 하이브리드 모델 업데이트 기법을 개발하였다. 유한요소와 같은 수학적 모델을 사용하여 구조물의 거동을 모사하기 위해서는 재료, 부재, 그리고 시스템의 정확한 모델링이 우선하여야 한다. 그러나 재료, 부재의 각 레벨에서의 수학적인 모델은 이상화과정을 거치면서 중요한 특성을 생략하거나, 시스템 구성시 부재간의 상호작용이나 경계조건의 단순화로 인해 유한요소 모델은 실제 구조물의 거동과 차이를 보이게 된다. 본 논문에서 제시된 하이브리드 모델 업데이트 기법은 구조물의 거동과 수학적 모델의 해석결과 차이를 인공신경망 기법을 사용하여 보완함으로써 시스템 모델의 정확도를 높일 수 있다. 이때 시스템의 거동 데이터로부터 부재 또는 재료모델을 개선할 수 있는 데이터를 추출하여 부재 또는 재료모델을 개선한다. 제시된 기법은 보-기둥 접합부의 이력모델을 개선하는 것으로 검증하였으며, 복잡한 거동을 보이는 시스템 모델링에 광범위하게 사용될 수 있다.

인공신경망을 이용한 금강 유역 하천 수위예측 적용성 평가 (Application Assessment of water level prediction using Artificial Neural Network in Geum river basin)

  • 유완식;김선민;김연수;황의호;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.424-424
    • /
    • 2018
  • 인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.

  • PDF

부분최소자승법과 인공신경망을 이용한 고분자전해질 연료전지 스택의 모델링 (Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks)

  • 한인수;신현길
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.236-242
    • /
    • 2015
  • 고분자전해질 연료전지 스택의 성능 및 주요 운전 변수를 예측하기 위해 부분최소자승법과 인공신경망의 두 가지 데이터 기반 모델링 기법을 제시한다. 30 kW급 고분자전해질 연료전지 스택 실험으로부터 확보한 데이터를 사용하여 부분최소자승 및 인공신경망 모델들을 구성한 후 각 모델의 예측 성능 및 계산 시간을 비교하였다. 모델의 복잡성을 줄이기 위해 부분최소자승법에 기초한 VIP(Variable Importance on PLS Projections) 선정기준을 모델링 절차에 포함하여, 초기 입력변수의 집합으로부터 모델링에 필요한 입력변수들을 선정하였다. 모델링 결과, 인공신경망이 스택의 평균 셀전압과 캐소드(cathode) 출구 온도를 예측하는데 있어서, 부분최소자승법 보다 우수한 성능을 보였다. 그러나 부분최소자승법 또한 입력변수와 출력변수 간에 선형적 상관관계만을 모델링 할 수 있음에도 불구하고 비교적 만족할 만한 예측 성능을 나타냈다. 모델의 정확도와 계산속도의 요구조건에 따라 두 모델링 기법은 고분자전해질 연료전지의 설계 및 운전 분야의 성능 예측, 온라인 및 오프라인 최적화, 제어 및 이상 진단을 위해 적용될 수 있을 것으로 판단된다.

퍼지추론 네트워크를 이용한 적응적 탐색전략 (An Adaptive Search Strategy using Fuzzy Inference Network)

  • Lee, Sang-Bum;Lee, Sung-Joo;Lee, Mal-Rey
    • 한국컴퓨터정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.48-57
    • /
    • 2001
  • 퍼지 논리의 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래할 수 있다. 한편 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링 하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경 논리망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리망을 기반으로 하는 추론네트워크를 확장하여 퍼지 추론 네트워크를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙을 보완하여 적용한다. 퍼지 추론 네트워크상에서 퍼지규칙의 실행부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다.

동적신경망 NARX 기반의 SAR 전력모듈 안전성 연구 (A NARX Dynamic Neural Network Platform for Small-Sat PDM)

  • 이해준
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.809-817
    • /
    • 2020
  • 소형위성 전력분배 및 전송모듈의 설계와 개발과정에서 딥러닝 알고리즘으로 동적 전력자원의 안정성을 평가하였다. 안정성 평가에 따른 요구사항은 소형위성 탑재체인 SAR 레이더의 전력분배모듈과 수요모듈의 전력전송기능을 구성하였다. 전력모듈인 PDM을 구성하는 스위칭 전력부품의 성능확인을 위해 동적신경망을 활용하여 신뢰성을 검증하였다. 신뢰성 검증을 위한 딥러닝 적용대상은 소형위성 본체로부터 공급되는 전력에 대한 탑재체의 전력분배기능이다. 이 기능에 대한 성능확인을 위한 모델링 대상은 출력전압변화추이(Slew Rate Control), 전압오류(Voltage Error), 부하특성(Load Power)이다. 이를 위해 첫째, 모델링으로 Coefficient Structure 영역을 정의하고 PCB모듈을 제작하여 안정성과 신뢰성을 비교 평가하였다. 둘째, 딥러닝 알고리즘으로 Levenberg-Marquare기반의 Two-Way NARX신경망 Sigmoid Transfer를 사용하였다.

신경망을 이용한 박막공정장비의 플라즈마 전위 모델링 (Modeling of Plasma Potential of Thin Film Process Equipment by Using Neural Network)

  • 김수연;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.175-176
    • /
    • 2007
  • Radial Basis Function Network (RBFN)을 이용하여 플라즈마 전위의 예측 모델을 개발하였다. RBFN의 예측성능은 Genetic Algorithm (GA)를 이용하여 최적화 하였다. 체계적인 모델링을 위해 통계적인 실험계획법이 적용되었으며, 실험은 반구형 유도 결합형 플라즈마 장비를 이용하여 수행이 되었다. $Cl_2$ 플라즈마에서의 데이터 측정에는 Langmuir probe가 이용되었다. 최적화된 GA-RBFN 모델을 일반 RBFN 모델과 비교하였으며, 15%정도 모델의 예측성능을 향상시켰다.

  • PDF

유기물 첨가제에 따른 Cu-Zn-Sn 합금 도금층 물성 연구 (Study on the Physical Properties of Cu-Zn-Sn Alloy by Organic Additives)

  • 이주열;이상열;박상언
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.147-147
    • /
    • 2008
  • 역전파 신경망은 반도체 공정 모델링에 효과적으로 응용되고 있으며, 모델의 예측정확도를 향상시키기 위하여 Random Generator를 개발하였다. Random Generator의 효과가 기존의 모델에 비해 예측정확도의 향상에 영향을 주었음을 알 수 있었다. 모델링에 이용한 실험데이터는 다중 유도결합형 플라즈마 장비를 이용하여 수집하였다.

  • PDF

기판인가전압에 따른 HfN 박막의 결정화 변화

  • 이진희;박환진;주대현;최종인;박지혜;천희곤
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.43-44
    • /
    • 2007
  • 역전파 신경망은 반도체 공정 모델링에 효과적으로 응용되고 있으며, 모델의 예측정확도를 향상시키기 위하여 Random Generator를 개발하였다. Random Generator의 효과가 기존의 모델에 비해 예측정확도의 향상에 영향을 주었음을 알 수 있었다. 모델링에 이용한 실험데이터는 다중 유도결합형 플라즈마 장비를 이용하여 수집하였다.

  • PDF