• Title/Summary/Keyword: 신경망제어

Search Result 876, Processing Time 0.024 seconds

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.

Blurred Image Enhancement Techniques Using Stack-Attention (Stack-Attention을 이용한 흐릿한 영상 강화 기법)

  • Park Chae Rim;Lee Kwang Ill;Cho Seok Je
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • Blurred image is an important factor in lowering image recognition rates in Computer vision. This mainly occurs when the camera is unstablely out of focus or the object in the scene moves quickly during the exposure time. Blurred images greatly degrade visual quality, weakening visibility, and this phenomenon occurs frequently despite the continuous development digital camera technology. In this paper, it replace the modified building module based on the Deep multi-patch neural network designed with convolution neural networks to capture details of input images and Attention techniques to focus on objects in blurred images in many ways and strengthen the image. It measures and assigns each weight at different scales to differentiate the blurring of change and restores from rough to fine levels of the image to adjust both global and local region sequentially. Through this method, it show excellent results that recover degraded image quality, extract efficient object detection and features, and complement color constancy.

Design of Network Attack Detection and Response Scheme based on Artificial Immune System in WDM Networks (WDM 망에서 인공면역체계 기반의 네트워크 공격 탐지 제어 모델 및 대응 기법 설계)

  • Yoo, Kyung-Min;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.566-575
    • /
    • 2010
  • In recent, artificial immune system has become an important research direction in the anomaly detection of networks. The conventional artificial immune systems are usually based on the negative selection that is one of the computational models of self/nonself discrimination. A main problem with self and non-self discrimination is the determination of the frontier between self and non-self. It causes false positive and false negative which are wrong detections. Therefore, additional functions are needed in order to detect potential anomaly while identifying abnormal behavior from analogous symptoms. In this paper, we design novel network attack detection and response schemes based on artificial immune system, and evaluate the performance of the proposed schemes. We firstly generate detector set and design detection and response modules through adopting the interaction between dendritic cells and T-cells. With the sequence of buffer occupancy, a set of detectors is generated by negative selection. The detection module detects the network anomaly with a set of detectors and generates alarm signal to the response module. In order to reduce wrong detections, we also utilize the fuzzy number theory that infers the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals and the intensity of alarm occurrence. The response module sends the control signal to attackers to limit the attack traffic.

Prediction of Air Temperature and Relative Humidity in Greenhouse via a Multilayer Perceptron Using Environmental Factors (환경요인을 이용한 다층 퍼셉트론 기반 온실 내 기온 및 상대습도 예측)

  • Choi, Hayoung;Moon, Taewon;Jung, Dae Ho;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2019
  • Temperature and relative humidity are important factors in crop cultivation and should be properly controlled for improving crop yield and quality. In order to control the environment accurately, we need to predict how the environment will change in the future. The objective of this study was to predict air temperature and relative humidity at a future time by using a multilayer perceptron (MLP). The data required to train MLP was collected every 10 min from Oct. 1, 2016 to Feb. 28, 2018 in an eight-span greenhouse ($1,032m^2$) cultivating mango (Mangifera indica cv. Irwin). The inputs for the MLP were greenhouse inside and outside environment data, and set-up and operating values of environment control devices. By using these data, the MLP was trained to predict the air temperature and relative humidity at a future time of 10 to 120 min. Considering typical four seasons in Korea, three-day data of the each season were compared as test data. The MLP was optimized with four hidden layers and 128 nodes for air temperature ($R^2=0.988$) and with four hidden layers and 64 nodes for relative humidity ($R^2=0.990$). Due to the characteristics of MLP, the accuracy decreased as the prediction time became longer. However, air temperature and relative humidity were properly predicted regardless of the environmental changes varied from season to season. For specific data such as spray irrigation, however, the numbers of trained data were too small, resulting in poor predictive accuracy. In this study, air temperature and relative humidity were appropriately predicted through optimization of MLP, but were limited to the experimental greenhouse. Therefore, it is necessary to collect more data from greenhouses at various places and modify the structure of neural network for generalization.

A Study on the Stability Control of Injection-molded Product Weight using Artificial Neural Network (인공신경망을 이용한 사출성형품의 무게 안정성 제어에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.773-787
    • /
    • 2020
  • In the injection molding process, the controlling stability of products quality is a very important factor in terms of productivity. Even when the optimum process conditions for the desired product quality are applied, uncontrollable external factors such as ambient temperature and humidity cause inevitable changes in the state of the melt resin, mold temperature. etc. Therefore, it is very difficult to maintain prodcut quality. In this study, a system that learns the correlation between process variables and product weight through artificial neural networks and predicts process conditions for the target weight was established. Then, when a disturbance occurs in the injection molding process and fluctuations in the weight of the product occur, the stability control of the product quality was performed by ANN predicting a new process condition for the change of weight. In order to artificially generate disturbance in the injection molding process, controllable factors were selected and changed among factors not learned in the ANN model. Initially, injection molding was performed with a polypropylene having a melt flow index of 10 g/10min, and then the resin was replaced with a polypropylene having a melt floiw index of 33 g/10min to apply disturbance. As a result, when the disturbance occurred, the deviation of the weight was -0.57 g, resulting in an error of -1.37%. Using the control method proposed in the study, through a total of 11 control processes, 41.57 g with an error of 0.00% in the range of 0.5% deviation of the target weight was measured, and the weight was stably maintained with 0.15±0.07% error afterwards.

Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System (진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구)

  • Kim, Hyun-Su;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.

CNN Based 2D and 2.5D Face Recognition For Home Security System (홈보안 시스템을 위한 CNN 기반 2D와 2.5D 얼굴 인식)

  • MaYing, MaYing;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1207-1214
    • /
    • 2019
  • Technologies of the 4th industrial revolution have been unknowingly seeping into our lives. Many IoT based home security systems are using the convolutional neural network(CNN) as good biometrics to recognize a face and protect home and family from intruders since CNN has demonstrated its excellent ability in image recognition. In this paper, three layouts of CNN for 2D and 2.5D image of small dataset with various input image size and filter size are explored. The simulation results show that the layout of CNN with 50*50 input size of 2.5D image, 2 convolution and max pooling layer, and 3*3 filter size for small dataset of 2.5D image is optimal for a home security system with recognition accuracy of 0.966. In addition, the longest CPU time consumption for one input image is 0.057S. The proposed layout of CNN for a face recognition is suitable to control the actuators in the home security system because a home security system requires good face recognition and short recognition time.

Improving Learning Performance of Support Vector Machine using the Kernel Relaxation and the Dynamic Momentum (Kernel Relaxation과 동적 모멘트를 조합한 Support Vector Machine의 학습 성능 향상)

  • Kim, Eun-Mi;Lee, Bae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.735-744
    • /
    • 2002
  • This paper proposes learning performance improvement of support vector machine using the kernel relaxation and the dynamic momentum. The dynamic momentum is reflected to different momentum according to current state. While static momentum is equally influenced on the whole, the proposed dynamic momentum algorithm can control to the convergence rate and performance according to the change of the dynamic momentum by training. The proposed algorithm has been applied to the kernel relaxation as the new sequential learning method of support vector machine presented recently. The proposed algorithm has been applied to the SONAR data which is used to the standard classification problems for evaluating neural network. The simulation results of proposed algorithm have better the convergence rate and performance than those using kernel relaxation and static momentum, respectively.

Performance Analysis of Neural Network Compensation Algorithm of Multiaxis Thrust Measurement Stand (다축시험대의 신경망 보상 알고리즘 성능 연구)

  • Kim, Joung-Keun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.52-58
    • /
    • 2007
  • The irregular fuel surface was observed by the visualization of hybrid rocket combustion. Even though the test condition maintained oxidizer rich environment, the irregular dark fuel surface was formed as the result of incomplete combustion. In order to investigate the correlation of the characteristics of oxidizer flow and the irregular fuel surface, various flow conditions were imposed such as swirl flow, induced swirl flow by helical fuel configuration and straight flow. Test results revealed no correlation was found between oxidizer flow condition and irregular fuel surface. And this can be a commonly observed phenomena in the tests with different fuel/oxidizer combination. Thus, the irregular fuel surface can be a result of the interaction of blowing flow of vaporized fuel and the boundary layer of oxidizer flow. A further study will be required to confirm the assumption for the formation of irregular fuel surface.

Implementation of Access Control System Suitable for Meteorological Tasks in Grid Computing Environment (그리드 컴퓨팅 환경에서 기상업무에 적합한 접근 제어 시스템 구현)

  • Na, Seung-kwon;Ju, Jae-han
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Recently computing devices by connecting to a network, grid computing, the next generation of digital neural networks that provide maximum service will connect all of the computer such as a PC or server, PDA into one giant network makes the virtual machine. Therefore, we propose the grid computing implementation model to be applied to meteorological business field as follows. First, grid computing will be used for tasks such as the development of numerical models below the mid-scale or test operations, and the final backup of the weather supercomputer. Second, the resources that will constitute grid computing are limited to business PCs and Linux servers operated by the central government considering operational efficiency. Third, the network is restricted to the LAN section, which suggests the implementation of high performance computing.