• 제목/요약/키워드: 신경망모델

검색결과 2,220건 처리시간 0.033초

신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (II) (Design of Neural-Network Based Autopilot Control System(II))

  • 곽문규;서상현
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.19-26
    • /
    • 1997
  • 본 논문에서는 신경망을 이용한 선박자동조타장치의 개발에 관한 연구결과를 소개한다. 앞의 논문에서 소개된 Back-Propagation 알고리즘을 이용하여 선박의 자동운항을 위한 자동제어방법을 개발하였으며 그 결과 기준모델추구신경망제어기와 순간최적제어기를 설계하였다. 기준모델추구신경망제어기는 선수각과 선수각속도가 주어진 기준모델을 추구하도록 타각을 제어하도록 하였으며, 순간최적제어기는 현 상태에서 다음상태로의 천이를 최적화하도록 하였다. 신경망에 근거한 이들 제어기법을 간단한 선박조종수치모델에 적용한 결과 그 효용성을 확인할 수 있었다.

  • PDF

그래프 신경망에 대한 그래디언트 부스팅 기법 (A Gradient Boosting Method for Graph Neural Networks)

  • 장은조;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.574-576
    • /
    • 2022
  • 최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.

신경망 모델을 활용한 한국어 감성분석 (Sentiment Analysis of Korean Sentences using a Neural Network Model)

  • 김동현;김태영;김효정;문유진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.7-8
    • /
    • 2022
  • 본 연구에서는 한국어 SNS 대화에서 나타나는 문장들의 감성을 분석하고자 신경망 모델을 활용하여 시스템을 구축하였다. 현재 해외 SNS 감성분석에 대한 연구는 많이 진행된 상황이지만, 한국어 범용 대화에 대해 적절한 모델이 무엇인지는 연구가 부족한 실정이었다. 따라서 한국어 대화에 적합한 모델을 채택해 보다 정확한 감성분석을 수행하였다. 이를 위해 한국어 SNS 대화 데이터에 대해 신경망 모델을 적용하여, 82% 성공률로 기존 모델 72% 성공률보다 훨씬 더 우수한 성능을 보였다. 또한 본 연구의 결과는 악플 추적 등 실용적인 분야에도 기여할 수 있다고 사료된다.

  • PDF

심층신경망을 이용한 복합재 로터 블레이드의 진동특성 예측 (Prediction of Vibration Characteristics of a Composite Rotor Blade via Deep Neural Networks)

  • 유승호;정인호;김혜진;조해성;김태주;기영중
    • 한국항공우주학회지
    • /
    • 제50권5호
    • /
    • pp.317-323
    • /
    • 2022
  • 본 논문에서는 c-스파 단면을 갖는 복합재 로터 블레이드에 대해 co-rotational(CR) 이론 기반 비선형 쉘 요소를 사용하는 In-house code를 통해 고유진동수를 구하고, 이를 이용하여 블레이드의 진동특성을 예측하는 심층신경망 모델을 개발하였다. 심층신경망 모델은 무작위 두께 분포를 갖는 데이터와 스팬 방향으로 두께 감소 경향성을 보이는 데이터를 통해 심층신경망 모델의 정확성을 평가하였다.

상호정보량 기법과 인공신경망을 이용한 실시간 강우 자료 보정 (Calibration of Real Time Rainfall Data Using Mutual Information and Artificial Neural Network)

  • 성경민;구여주;김태순;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1269-1273
    • /
    • 2010
  • 이러한 강우자료의 결측값이나 오자료를 보정하는 것은 그 유역의 정확한 수문학적 특성 파악 및 안전한 수공구조물의 설계에 영향을 미치게 되므로 매우 중요하다고 할 수 있다. 최근 이러한 강우자료를 비선형적 모델인 인공신경망(Artificial Neural Network)을 이용하여 보정하는 연구가 활발히 진행되고 있다(오재우 등, 2008). 그러나 이러한 인공신경망을 적용하는 경우, 선택한 신경망 구조의 형태와 학습(training)을 위해 사용되는 자료가 전체 자료의 특성을 반영하고 있는 정도에 따라 정확도에 차이를 보인다(한광희 등, 2010). 따라서 자료보정을 위한 입력 자료의 선택은 인공신경망을 이용한 결측치 보정의 중요한 과정이다. 본 연구에서는 이러한 입력 자료의 선택을 위한 여러 가지 기법 중 입력 변수간의 상호정보량 (Mutual Information)을 이용한 방법을 적용하여 대상 결측 지점을 보정할 강우지점을 선별한 후 선택된 지점만으로 인공신경망을 구성하여 강우자료를 보정하고 주변 자료를 모두 이용한 결과와 상관성분석으로 얻어진 결과와 비교하였다.

  • PDF

웨이블릿 신경 회로망을 이용한 광디스크 드라이브의 편심 보상에 관한 연구 (A Study on the Eccentricity Compensation of Optical Disk Using a Wavelet Neural Network)

  • 주병재;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2613-2615
    • /
    • 2004
  • 본 논문에서는 광학 디스크 기기의 주기적인 외란인 편심 보상을 위해 웨이블릿 신경 회로망 기반 외란 모델로 구성된 순방향 오차 제거(feedforward error rejection) 방법을 제안한다. 신호 모델링 방법으로 사용되어진 신경 회로망 모델의 단점인 실시간 처리 능력 및 국부 최소치로의 가능성 등을 극복하며 주파수와 시간 영역에서의 우수한 신호 해석 능력을 가진 웨이블릿 변환의 장점을 가진 웨이블릿 신경 회로망을 이용하여 디스크의 외란을 모델링 한다. 웨이블릿 신경회로망은 경사 강하법 (gradient descent method)을 이용하여 학습하며, 본 논문에서 제안한 방법의 효율성을 검증하기 위해 실제 광학 디스크 기기의 외란 데이터를 이용한 컴퓨터 모의 실험을 수행한다.

  • PDF

토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식 (Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure)

  • 정평곤;임영일
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.123-141
    • /
    • 2023
  • 인공신경망을 이용한 모델 개발에서 데이터의 품질은 모델 성능에 큰 영향을 주고, 양질의 충분한 데이터가 인공신경망 훈련을 위해 필요하다. 하지만, 공학 분야에서는 적은 양의 데이터로 모델을 개발해야 하는 경우가 자주 발생한다. 본 논문은 토양에 살포된 축산 분뇨로부터 암모니아 방출량에 대한 적은 수의 데이터(83 개)를 사용하여 인공신경망 모델의 예측 성능을 향상할 수 있는 방안을 제시하였다. Michaelis-Menten 식으로 표현되는 암모니아 방출량 문제는 11개 입력변수에 대하여 2개 출력변수로 구성되었다. 출력변수는 최대 질소 발생량(Nmax, kg/ha)과 Nmax의 절반에 도달하는 시간(Km, h) 이다. 범주형 입력변수에 대해 다차원 등간격 기법인 one-hot encoding 을 이용하여 데이터 전처리를 수행하였고, 훈련데이터 66개에 대하여 generative adversarial network (GAN)을 이용하여 13개 데이터를 추가로 보강하였다. 또한, 인공신경망의 초매개변수인 은닉층 수, 각 은닉층 내 뉴런 수, 활성화 함수의 최적 조합을 찾기 위하여 Gaussian process (GP)를 사용하였다. 기존의 인공신경망 구조(Lim et al., 2007) 는 17개 평가데이터에 대하여 mean absolute error (MAE)는 Km에서 0.0668, Nmax에서 0.1860이었다. 본 연구에서 제시된 인공신경망 모델은 Km에서 0.0414, Nmax에서 0.0818로 MAE 가 기존 모델 대비 각각 38%, 56% 감소하였다. 본 연구에서 제시된 방법은 적은 양의 데이터를 갖는 문제에서 인공신경망 성능을 향상하기 위하여 활용할 수 있을 것이다.

합성곱 신경망을 이용한 아스팔트 콘크리트 도로포장 표면균열 검출 (Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network)

  • 최윤수;김종호;조현철;이창준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권6호
    • /
    • pp.38-44
    • /
    • 2019
  • 본 연구에서는 아스팔트 콘크리트 도로포장의 표면균열 검출을 위해 합성곱 신경망을 이용하였다. 합성곱 신경망의 학습에 사용되는 표면균열 이미지 데이터의 양에 따른 합성곱 신경망의 성능향상 정도를 평가하였다. 사용된 합성곱 신경망의 구조는 5개의 층으로 구성되어있으며, 3×3 크기의 convolution filter와 2×2 크기의 pooling kernel을 사용하였다. 합성곱 신경망의 학습을 위해서 도로노면 조사 장비를 통해 구축된 국내 도로포장 표면균열 이미지를 활용하였다. 표면균열 이미지 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율, 미검출율, 과검출율을 평가하였다. 가장 많은 양의 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율은 96.6% 이상, 미검출율, 과검출율은 3.4% 이하의 성능을 나타내었다.

패턴 인식 성능을 향상시키는 새로운 형태의 순환신경망 (A New Thpe of Recurrent Neural Network for the Umprovement of Pattern Recobnition Ability)

  • 정낙우;김병기
    • 한국정보처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.401-408
    • /
    • 1997
  • 인간이 지식을 얻는 대부분의 수단은, 눈으로 사물을 보거나 귀로 소리를 들어 입력되는 패턴.영상또는 소리.을 인식하고 그것을 지식으로 축적하는 연속적인 과정이다. 그중 문자인식은 시각정보를 통하여 문제를 인식하고 나아가 의미를 이해하는 인간의 능력을 컴퓨터로 실현하려는 패턴인식의 한분야로서 신경망을 사용한 패턴인식 시스템으로 발전되고 있다. 신경망의 학습에 있어서를 출력값을 재사용하는 신경망모델로는, 순환신경망( Recurrent Neural Netwrek)이 있다. 최근 들어서 이러한 순환신경망을 오프라인 필기체 문자와 같은 정적인 패턴의 분류에 적용하려는 연구가 많이 진행되고 있다. 그러나 이러한 방법들의 대부분든 오프라인 필기체문자와 같은 정적인 패턴의 분류에 있어서는 효과적으로 적용되지 않는다. 이에 본 연구에서는 오프라인 필기체문자와 같은 정적인 패턴을 효과적으로 분르하기 위한 새로운 형태의 순환신경망을 제안한다.본논문에서는 Jordan과 Elman Model 을 확정 결합한 새로운 J-E(Jordan-Elman) 신경망 모델을 사용하여 숫자 및 필기체 문자와 같은 정적인 패턴의 인식에서 기존의 신명망보다 성능이 향상되었음을 보여 준다.

  • PDF

계절 및 날씨 정보를 이용한 인공신경망 기반 전력수요 예측 알고리즘 개발 (The Artificial Neural Network based Electric Power Demand Forecast using a Season and Weather Informations)

  • 김미경;홍철의
    • 전자공학회논문지
    • /
    • 제53권1호
    • /
    • pp.71-78
    • /
    • 2016
  • 본 논문은 인공 신경망에 기반을 둔 새로운 전력 수요 예측 모델을 제시한다. 인공 신경망 입력 변수로 시간과 날씨요소를 고려하였다. 시간 요소는 하절기와 동절기 전력수요 데이터의 자기 상관계수를 측정하여 선정하였고, 날씨요소는 피어슨 상관계수를 이용하여 선정하였다. 중요한 날씨요소로는 온도와 이슬점으로 이들은 전력수요와 밀접한 상관관계를 가지고 있다. 반면에 습도, 기압, 풍속 등과 같은 날씨요소는 전력수요와의 상관관계가 높지 않게 나타나 신경망의 입력 변수에서 제외하였다. 실험결과 새로이 제안한 인공 신경망을 이용한 전력수요 모델은 시간요소 및 날씨요소와 이에 대한 가중치를 피크 전력율과 계절에 따라 차등 적용하여 높은 적중률을 보였다.