• Title/Summary/Keyword: 신경가소성

Search Result 41, Processing Time 0.036 seconds

Neurobiological Mechanism of Psychotherapy (정신치료의 신경생물학적 기전)

  • Lee, Seung-Hwan;Kim, Seung-Hyun
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.79-94
    • /
    • 2002
  • Polarisation of biological and psychosocial aspects of psychiatry is nowadays main stream. Current knowledges of the interaction between biology and psychology make it possible to consider a truly integrative approach of the two aspects. Research findings suggest that the neuronal plasticity is the key mechanism to answer how the mental function work to an environmental stimuli and how the psychotherapeutic approach work on the brain. Advances in neuroscience research have led to a more sophisticated understanding of how psychotherapy may affect brain function. Even though there have been a tremendous efforts to find out the neurobiological mechanism of mental function, the answer is at best premature. In this article, research findings about of neuronal plasticity, implicit memory, animal studies which were associated with psychotherapy and psychological aspects were reviewed.

  • PDF

Hemispheric Asymmetry of Plasticity in the Human Motor Cortex Induced by Paired Associative Stimulation (말초신경-피질 연계자극에 의해 유도되는 운동피질 가소성의 비대칭성)

  • Shin, Hae-Won;Sohn, Young-H.
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Background: In the brain, the dominant primary motor cortex (M1) has a greater hand representation area, shows more profuse horizontal connections, and shows a greater reduction in intracortical inhibition after hand exercise than does the non-dominant M1, suggesting a hemispheric asymmetry in M1 plasticity. Methods: We performed a transcranial magnetic stimulation (TMS) study to investigate the hemispheric asymmetry of paired associative stimulation (PAS)-induced M1 plasticity in 9 right-handed volunteers. Motor evoked potentials (MEPs) were measured in the abductor pollicis brevis (APB) muscles of both hands, and MEP recruitment curves were measured at different stimulation intensities, before and after PAS. Results: MEP recruitment curves were significantly enhanced in the dominant, but not the non-dominant M1. Conclusions: These results demonstrate that the dominant M1 has greater PAS-induced plasticity than does the non-dominant M1. This provides neurophysiological evidence for the asymmetrical performance of motor tasks related to handedness.

The Neurological Effect and Mechanism of Mirror Therapy in Adults With Stroke (뇌졸중 환자를 대상으로 한 거울치료의 효과와 신경학적 기전)

  • Kim, Yeong-Jo
    • Therapeutic Science for Rehabilitation
    • /
    • v.2 no.1
    • /
    • pp.24-35
    • /
    • 2013
  • The Purpose of this study was to determine the clinical effectiveness of mirror therapy for stroke. Moreover, this paper was designed to summarize clarified information of neurological plasticity by mirror therapy to finally define the neurological mechanism. Mirror therapy improves the stroke patients' hand and arm motor function. It also has a positive influence on recovering performance of activities of daily living and relieving pain. However, it is not evident that mirror therapy restores visual neglect. There are various ways of recovering stroke. Fundamentally, all the theories are on a bases of restoration of premotor area. Premotor area which is associated with motor control increases the activation of primary motor area and finally improves patients' motor function. If primary motor area is completely damaged, premotor area and supplementary motor substitute for primary motor area. In summary of literature survey, there are not enough evidence to verify the effectiveness and neurological mechanism of mirror therapy. In future, more researches should be conducted to verify the neurological recovery through mirror therapy. Then, mirror therapy will be acknowledged as a clinically effective treatment.

Neurobiological Aspects of Epistemology and Brain Areas related to Mathematical Activities (인식론의 신경 생물학적 고찰 및 수학 활동과 관련된 두뇌의 활성화)

  • Kim, Youn-Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2010
  • In this article three types of neuro-biological epistemology have been studied and applied to mathematics. Nativism or innatism is favored by many evolutionary psychologists and some mathematicians. They believe domain specific brain functions or modules, particularly language faculty and number instinct in infants. Number/mathematical cognition is a new research area and scientists try to localize areas related with mathematics. Selectionism has adopted Darwinism to synapse growth and supports neuronal regression. Mathematical creativity can be explained using selectionism. Neural constructivism has originated from J. Piaget and supports neuronal/synapse growth in children or adults if adequate exercise and practise is given. Unlike Piaget, neural constructivists accepts the importance of structured experience for the reorganization of brain. Authors opinion is all these theories of epistemology is equally important and they all give insights on how the brain and self is made.

  • PDF

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

Estimation of Number of Synapses on a Neuron in the Brain Using Physical Bisector Method (Physical disector를 이용한 신경세포 및 신경연접 수의 측정)

  • Lee, Kea-Joo;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.83-91
    • /
    • 2006
  • The number and structure of synapses are dynamically changed in response to diverse physiological and pathological conditions. Since strength of synaptic transmission is closely related to the synaptic density on a neuron, both synaptogenesis and synapse loss may play important roles in controlling neuronal activity. Thus it is essential to estimate the number of synapses using an accurate quantitative method for better understanding of the numerical alteration of synapses under terrain experimental conditions. We applied physical disector principle to estimating the number of synapses per neuron in the dentate gyrus of adult mice. First, we measured the numerical density of granule cells using the physical disector principle. Second, the density of medial perforant path to granule cell synapses was estimated using the bidirectional physical disector. Then, the volume ratio of molecular layer to granule cell layer was measured. With these numerial values, we successfully calculated the number of synapses per neuron. Individual granule cells have approximately 6500 synapses in the dentate gyrus of adult mice $(6,545{\pm}330)$, which are comparable to those of other researchers. Our results showed that the estimation of synapse numbers per neuron using the physical disector principle would provide accurate and precise information on the numerical alteration of synapses in diverse physiological and pathological conditions. Following analyses of synapse numbers using this method will contribute to the better understanding of structural synaptic plasticity in a variety of experimental animal models.

Neural Plasticity after Brain Injury (뇌 손상 후 신경 가소성)

  • Kwon, Young-Shil;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.791-797
    • /
    • 2001
  • After brain injury, patients show a wide range in the degree of recovery. By a variety of mechanisms, the human brain is constantly undergoing plastic changes. Spontaneous recovery from brain injury in the chronic stage omes about because of plasticity. The brain regions are altered. resulting in functionally modified cortical network. This review cnsidered the neural plasticity from cellular and molecular mechanisms of synapse formation to behavioural recovery from brain injury in elderly humans. The stimuli required to elicit plasticity are thought to be activity-dependent elements. especially exercise and learning. Knowledge about the physiology of brain plasticity has led to the development of methods for rehabilitation.

  • PDF

A study of injury mechanism and neural plasticity of traumatic brain injury (외상성 뇌손상의 손상 기전과 신경가소성에 대한 고찰)

  • Song Ju-min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Traumatic brain injury is an insult to the brain caused by an external physical force, that may product a diminished or altered state of consciousness, which results in impairment of cognitive abilities or physical function. The purposes of this study were to overview injury mechanism and neural plasticity of traumatic brain injury. Injury mecanism includes exitotoxicity, production free radical, inflammation and apoptosis. Furthermore traumatic brain injury has protective mechanisms includes production of neural growth factor, heat shock protein, anti-inflammatory cytokines.

  • PDF

The New Neurobiology of Depression (우울증의 새로운 신경생물학)

  • Kim, Yong Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.3-19
    • /
    • 2001
  • Recent basic and clinical studies demonstrate a major role for neural plasticity in the etiology and treatment of depression and stress-related illness. The neural plasticity is reflected both in the birth of new cell in the adult brain(neurogenesis) and the death of genetically healthy cells(apoptosis) in the response to the individual's interaction with the environment. The neural plasticity includes adaptations of intracellular signal transduction pathway and gene expression, as well as alterations in neuronal morphology and cell survival. At the cellular level, repeated stress causes shortening and debranching of dendrite in the CA3 region of hippocampus and suppress neurogenesis of dentate gyrus granule neurons. At the molecular level, both form of structural remodeling appear to be mediated by glucocorticoid hormone working in concert with glutamate and N-methyl-D-aspartate(NMDA) receptor, along with transmitters such as serotonin and GABA-benzodiazepine system. In addition, the decreased expression and reduced level of brain-derived neurotrophic factor(BDNF) could contribute the atrophy and decreased function of stress-vulnerable hippocampal neurons. It is also suggested that atrophy and death of neurons in the hippocampus, as well as prefrontal cortex and possibly other regions, could contribute to the pathophysiology of depression. Antidepressant treatment could oppose these adverse cellular effects, which may be regarded as a loss of neural plasticity, by blocking or reversing the atrophy of hippocampal neurons and by increasing cell survival and function via up-regulation of cyclic adenosine monophosphate response element-binding proteins(CREB) and BDNF. In this article, the molecular and cellular mechanisms that underlie stress, depression, and action of antidepressant are precisely discussed.

  • PDF

Expression of Calponin 3 in the Striatum Following 3-Nitropropionic Acid-induced Neurotoxicity (선조체에서 3-nitropropionic acid 투여 후 calponin 3의 발현 연구)

  • Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.125-130
    • /
    • 2013
  • Calponin 3 is an F-actin-binding protein and plays a key role in regulating spine plasticity and synaptic activity in neurons. Unlike the other subtypes, calponin 1 and 2, which are expressed in smooth and cardiac muscle cells, calponin 3 is highly expressed in the brain. The goal of this study was to elucidate the spatiotemporal expression pattern of calponin 3 following repeated administration of 3-nitropropionic acid in mice. The repeated administration of 3-nitropropionic acid generated necrotic neuronal cell death in the striatum. Calponin 3 was up-regulated in the neuroprotective penimbral region from 1.5 days after the last injection and thereafter. Double immunofluorescence study revealed that calponin 3 was induced in GFAP-positive astrocytes. These results suggest that calponin 3 induction in the neuroprotective penumbral area following 3-nitropropionic acid intoxication may play a key role in reactive astrogliosis in the striatum.