• Title/Summary/Keyword: 식재모델

Search Result 80, Processing Time 0.021 seconds

The riparian vegetation community models according to hydrologic and soil environments - Case of Daecheongho lake reservoirs - (수문 및 토양환경을 고려한 수변식생군락 조성 모델 - 대청호 저수지를 사례로 -)

  • Park, Miok
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.144-154
    • /
    • 2017
  • The riparian vegetation is one of corridor type ecosystems, an ecotone and able to improve the ecological soundness by structural and functional link. And they act as habitats, sources and sinks of species, conduits, filters and barriers. This study was carried out to develop the vegetation model for the fluctuation areas of lake reservoirs consider of hydrologic and soil environments according to the vegetation structure of the reference ecosystem. To develop the case study, 2 sites within 10degree slope of the Daecheong Lake were selected. The riparian vegetation models were built by the results of GIS analysis, remote satellite analysis, field survey results, consider of water level, flooded frequency, soil and topographic index, land cover or land use etc. 1) study area varied from FWL to -5m of NFWL, 2) slope 10% below, 3) vegetations flooded below 100days yearly are Salix koreensis, Salix chaenomeloides, Salix gracilistyla, 4)land cover type classified wildlife grassland, abandoned paddy field, cropland according to landuse (or landcover), 5)finally model was constructed as ecological landscape forest. The model designs were suggested by 2 types in Daecheong lake reservoir. The model for the riparian vegetation corridors could be the basic and useful data to improve the ecological and landscape properties.

A Quality Prediction Model for Ginseng Sprouts based on CNN (CNN을 활용한 새싹삼의 품질 예측 모델 개발)

  • Lee, Chung-Gu;Jeong, Seok-Bong
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.41-48
    • /
    • 2021
  • As the rural population continues to decline and aging, the improvement of agricultural productivity is becoming more important. Early prediction of crop quality can play an important role in improving agricultural productivity and profitability. Although many researches have been conducted recently to classify diseases and predict crop yield using CNN based deep learning and transfer learning technology, there are few studies which predict postharvest crop quality early in the planting stage. In this study, a early quality prediction model is proposed for sprout ginseng, which is drawing attention as a healthy functional foods. For this end, we took pictures of ginseng seedlings in the planting stage and cultivated them through hydroponic cultivation. After harvest, quality data were labeled by classifying the quality of ginseng sprout. With this data, we build early quality prediction models using several pre-trained CNN models through transfer learning technology. And we compare the prediction performance such as learning period and accuracy between each model. The results show more than 80% prediction accuracy in all proposed models, especially ResNet152V2 based model shows the highest accuracy. Through this study, it is expected that it will be able to contribute to production and profitability by automating the existing seedling screening works, which primarily rely on manpower.

The Planting Models of Maritime Forest by the Plant Community Structure Analysis in the Seaside, Incheon - A Case Study on Pinus thunbergil Community and P. densiflora Community- (인천해안지역의 식물군집구조 분석을 통한 해안림 식재모델 연구(I) - 곰솔림과 소나무림을 대상으로 -)

  • 권전오;이경재;장상항
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.53-63
    • /
    • 2004
  • Planting models for restoration forest on the seaside have been demanded because coastal reclaimed land has increased for habitation sites, industrial complexes and new towns on the west seaside of Korea. The planting models have to consider endurance for bad environmental conditions in order to make a role to protect the urban space against the extreme seaside environment. The dominant species, relative impotance value, individuals and species number were analysed in natural forests that were exposed to extreme seaside conditions in Deokjeok island and Younghung island, Incheon. The native species such as Pinus thunbergii and Pinus densiflora, which survive on the seaside, were mainly recommended because the coastal reclaimed land had extreme environmental conditions. Stable vegetation structures could be made by multi-layer planing by using these species. A diverse vegetation community could be made according to these planting models. The maritime forests made by these planting models might be more effective for environmental adaptation and a windbreak forest than alone tree, and the young trees below 3m height could easily adapt to these conditions.

Development of Forest Garden Model Based on Structural Characteristics of Forest Community in Korea (우리나라 산림군집의 경관구조 특성기반 숲정원 모델의 개발)

  • Seung-Hoon Chun;Yoon-Jung Cha;Sang-Gil Park;Jun-Gyu Bae;Kyung-Mee Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.237-249
    • /
    • 2023
  • This study was carried to establish a new landscape-oriented gardening model based on climate, vegetation, and forest landscape characteristics. In addition, innovative forest garden models were suggested through an integrated approach to the ecological characteristics of forest vegetation communities and existing garden planting types. For the study, the key landscape elements that make up the main forest vegetation community were identified. And the vertical layers and horizontal distribution patterns of the community structure were typified by diagnostic species and their growth forms & habits such as dominant species, character species, and differential species, and degree of dominance-sociability. Based on this, a standardized vegetation structure and formation was developed by stratifying the landscape into main features, minor features, and detailed features according to visual dominant elements. Also, the applicability of the forest garden model was examined by applying the concept of borrowing landscape to representative deciduous broadleaf forests in the temperate northern region of Korea. Additionally, an integrated forest garden models based on the conceptual definition and typology of forest gardens, and a strategic approach to forest vegetation were proposed

Effects of Vegetation on Pollutants and Carbon Absorption Capacity in LID Facilities (LID시설에서의 오염물질 및 탄소흡수능에 식생이 미치는 영향)

  • Hong, Jin;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • As the impermeable area of soil increases due to urbanization, the water circulation system of the city is deteriorating. The existing guidelines for low impact development (LID) facilities installed to solve these water problems or in previous studies, engineering aspects are more prominent than landscaping aspects. This study attempted to present an engineering and landscaping model for reducing pollutants by identifying the effects of vegetation on rainfall outflows and pollutant reduction in bioretention and the economic aspects of planting. Based on the results of artificial rainfall monitoring at Jeonju Seogok Park and the literature on vegetation rainfall runoff and pollutant reduction performance, the best vegetation for reducing pollution compared to cost was Lythrum salicaria L and Salix gracilistyla Miq. was the best vegetation for carbon storage. If you insist to design plants with only these two plantation, there is no choice but to take risks such as biodiversity. Herbaceous plants such as Lythrum salicaria L can be replaced by death of the plants or pests if considered planting various plants. The initial planting cost could expensive, but it is also necessary to mix and plant Salix gracilistyla Miq, which are woody plants that are advantageous in terms of maintenance, according to the surrounding environment and conditions. Based on the conclusions drawn in this study, it can be a reference material when considering the reduction of pollution by species and carbon storage of vegetation in LID facilities.

Designing and Creating a Model Garden to Demonstrate Carbon Reduction - Case Study of Carbon Reduction Model Garden at the Sejong National Arboretum - (탄소저감 현장 실증을 위한 모델정원 설계와 조성 - 국립세종수목원 탄소저감 모델 정원을 사례로 -)

  • Park, Byunghoon;Seo, Jayoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.75-87
    • /
    • 2023
  • This study presents an experimental design for demonstrating the role of nature-based solutions to climate change in the landscape and garden sector. The study suggests spatial strategies for a carbon-neutral society and its role as a cultural industry. This paper describes the use of a low-maintenance garden as part of a strategy for carbon reduction with the goal of protecting the environment and forming a carbon-neutral society. To this end, this study involved the design and construction of a realistic model garden to provide scientific data on the functions, spatial elements, and carbon neutrality of carbon-reducing gardens. The target site is located in the Sejong National Arboretum. The test area in which the carbon-reducing function is measured is located in the centre of the site, and other spaces include dry gardens, community gardens, and flower gardens intended for exhibition and relaxation. The experimental area is divided into several smaller areas within which the carbon-reducing effect is analysed according to the amount of biochar installed, the planting density, and the plant species present. The application of facilities and construction methods to promote carbon reduction were based on the method known as '10 types of carbon gardening for the earth'. In the model garden, we employed rainwater utilization facilities and used low-carbon certified wood and local materials. The carbon reduction effect of each facility and construction method is compared and presented here. The results are expected to serve as an important basis for realizing a carbon-neutral society and can be used as a reference in various fields that require sustainable development, such as the garden industry.

A Simulation Model Development to Analyze Effects on LiDAR Acquisition Parameters in Forest Inventory (산림조사에서의 항공라이다 취득인자에 따른 영향분석을 위한 시뮬레이션 모델 개발)

  • Song, Chul-Chul;Lee, Woo-Kyun;Kwak, Doo-An;Kwak, Han-Bin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.310-317
    • /
    • 2008
  • Although aerial LiDAR had been launched commercially several years ago, it is still difficult to study data acquisition conditions and effects with various datasets because of its acquisition cost. Thus, this research was performed to study data acquisition conditions and effects with virtually various datasets. For this research, 3D tree models and forest stand models were built to represent graded tree sizes and tree plantation densities. Also, a variable aerial LiDAR acquisition model was developed. Then, through controlling flight height parameter, one of the data acquisition parameters, virtual datasets were collected for various data acquisition densities. From those datasets, forest canopy volumes and maximum tree heights were estimated and the estimated results were compared. As the results, the estimated is getting closer to the expected during the data acquisition density increase. This research would be helpful to perform further studios on relations between forest inventory accuracy and LiDAR cost.

  • PDF

The Development of Ecological Planting Model for the Make Up of Coastal Windbreak Forest on Suncheon Bay in Suncheon-si, Korea (순천만 해안방풍림 조성을 위한 생태학적 식재모델 개발)

  • Kim, Do-Gyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.89-104
    • /
    • 2011
  • This study was carried out to the development of ecological planting model to make up of coastal windbreak forest on the Suncheon-bay in Sucheon-si, Korea. Make up of coastal windbreak forest in this site was needed for appropriate bioresource, biodiversity and ecological structure, and for conservation of the eco-tour resource and protection of human life and property by the unforeseen disaster from the coast. Based on the plant-social principle, the planting model of windbreak forest was developed to facilitate growth of trees, considering planting locations. The ecological planting model for the coastal windbreak was composed of warm temperate evergreen and windbreak forest which is spreading around the inland area in Korea. The horizontal forest style was composed of forest edge community and inner forest community, and the vertical forest style was composed of upper, middle, low and ground planting class. The target of the present model was quasi-natural forest, and the species of tree were selected based on the adaptability to surroundings depending on a goal to create a forest and forest style. To achieve both functions of wind break forest and visual effect in short period of time, small trees and seedlings were planted with high-density of 40,000/ha in an expectation of easy natural maintenance in the future. The significance of the present study is a suggestion for a guideline to create ecological coastal windbreak forest in the Suncheon-bay in which the harmony of human life and the ecological conservation is of great importance. Also, the ecological coastal windbreak forest model should be developed further through the long term monitoring after construction of forest.

The Planting Models of Carpinus turczaninowii Community by the Plant Community Structure Analysis in Badahyanggi Arboretum - Case Study of Daebu-Yeongheung Islands - (군집구조분석을 통한 바다향기수목원 소사나무림 식재모델 연구 - 대부도 및 영흥도를 대상으로 -)

  • Kim, Yong-Hoon;Kwon, Oh-Jung;Ban, Su-Hong;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.4
    • /
    • pp.31-45
    • /
    • 2020
  • This study suggested the planting models of Carpinus turczaninowii community to make in Badahyanggi Arboretum and was carried out to the structure of C. turczaninowii commnity in Daebu-Yeongheung Islands. In order to identify the current ecological environment, this study set to 13 plots(i.e. 100㎡) for analysing detailed structure of plant communities. The research methodology was qualitative analysis. It used TWINSPAN, PCA and Indicator Species Analysis tools which are performed well in several comparisons of classification techniques and one of the ordination techniques showed that the plant communities. The results were classified into 3 communities that C. turczaninowii-Pinus densiflora community(I), C. turczaninowii-Quercus serrata community(II) and C. turczaninowii-Platycarya strobilacea community(III). In all of communities, C. turczaninowii was dominant species in canopy layer and understory layer, the degree of closure was high. Proposed the planting models that are I~II communities based on planting status in Badahyanggi Arboretum(Island Plant Botanical Garden), the structure of plant communities, indicator species and individual distribution by DBH classes. Also, The multi-layer planting plans are necessary, such as P. strobilacea, Lindera erythrocarpa, Viburnum carlesii, V. dilatatum, Ligustrum obtusifolium, Zanthoxylum schinifolium and so on.

Growth and Biomass Production of Fast Growing Tree Species Treated with Slurry Composting and Biofiltration Liquid Fertilizer (SCB액비가 속성수의 생장 및 biomass 생산에 미치는 영향)

  • Kim, Hyun-Chul;Yeo, Jin-Kie;Koo, Yeong-Bon;Shin, Han-Na;Choi, Jin-Young;Lee, Heon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.206-214
    • /
    • 2011
  • Fifteen clones of poplars, 2 clones of willows, and yellow poplar were used to evaluate the effects of 5 treatments such as SCBLF (slurry composting and biofiltration liquid fertilizer), general slurry liquid fertilizer, chemical fertilizer, groundwater, and control (no treatment) on vitality, growth performance, and biomass production. Five cuttings for each tree species were planted in 3 replications. After planting cuttings, a coppice was induced by cutting off stems at 10cm above the ground. Data were collected for first growing season and trees were harvested at the end of October. Maximum mortality rate i.e. 96% was recorded in the cuttings treated with groundwater and minimum 92% with control (no treatment). In all tree species, sprouting of stump was not differ significantly among the treatments. Total nitrogen concentrations of leaves and stump sprouts were higher in the treatment of SCBLF than the control, 26.6% and 22.9%, respectively. Biomass production was highest in the stumps treated with chemical fertilizer, $1.98Mg\;ha^{-1}\;year^{-1}$, and lowest in control ($1.34Mg\;ha^{-1}\;year^{-1}$).