• Title/Summary/Keyword: 식재림

Search Result 163, Processing Time 0.026 seconds

Allelopathic Effect of Chamaecyparis obtuaa on Understrory Vegetation in C. Abtusa Plantation (편백(Chamaecyparis obtusa)이 편백 식재림의 하층식생에 미치는 Allelopathy 효과)

  • 광승훈;길봉섭
    • The Korean Journal of Ecology
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • The understory vegetation of a Chamaecyparis obtusa plantation is relatively sparse at a valley in Sangkwan-my6n, Wanju-gun, Chiinbuk, Korea, and that of the pure C. obtusa plantation is more sparse than in the C, obtusa-Larix leptolepis plantation. In order to investigate the causes of this difference, this study was carried out both in the field and in the laboratory. Total of 109 taxa, comprising 90 genera and 53 families, were identified in the plantation. But the average number of species above 10% frequency was only 27, and both the number of species and plants per quadrat in the pure C. obtusa plantation were lower than those in the C, obtusa-L. leptolepis plantation. Light intensity, soil pH, and the difference of soil minerals were supposed to be parts of the causes. Soils, litter extracts of C. obtusa and L. leptolepis, and leachates collected by vermiculite beneath C. obtusa canopy for 1 year were tested for the effect on germination and seedling growth of both inside species and outside species in the laboratory. Germination and seedling growth of outside species were more suppressed than those of inside species. Therefore it was found that allelopathic effect of C. obtusa would be responsible for the sparse understory vegetation in the C. oblusa plantation.

  • PDF

Community Distribution on Mountain Forest Vegetation of the Noinbong Area in the Odaesan National Park, Korea (오대산 국립공원 노인봉 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Choi, Young-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • Forest vegetation of Noinbong (1,338 m) in Odaesan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, shrub forest, riparian forest, afforestation and other vegetation. Including 196 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 203 communities were researched; mountain forest vegetation classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 85 communities of mountain valley forest, 18 communities of coniferous forests, 3 communities of subalpine coniferous forests, 4 communities of subapine deciduous forests, 2 communities of shrub forests, 1 communities of riparian forests, 21 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 54.856 percent of deciduous broad-leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 15.482 percent of mountain valley forest, Pinus densiflora community holds 78.091 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Tilia amurensis, Fraxinus mandshurica, Cornus controversa, Quercus serrata, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

Wood Processing In New Zealand : Current Trends (뉴질랜드 임산공업(林産工業)의 현황(現況))

  • Walford, G.B.;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 1995
  • 뉴질랜드 임산공업은 1800년대 중반에 캘리포니아로부터 도입된 라디아타 소나무를 중심으로 이루어지고 있으며 이 라디아타 소나무는 전체 식재림의 90% 이상을 차지하는 뉴질랜드의 대표수종이다. 뉴질랜드의 식재림 면적은 매년 신장되고 있으며 현재 전국토의 약 5%인 130만ha에 달한다. 생산품인 제재목, 판상제품, 펄프와 종이 등은 주로 오스트레일리아, 일본 등에 수출하고 있으며, 수출상대국은 중국, 대만, 싱가포르 등으로 다변화되고 있다. 또한, 우리나라도 1993년기준 원목 333백만NZ$, 제재목 7백만NZ$, 펄프 36백만NZ$, 판재 8백만NZ$ 등 총 387백만 NZ$을 수입하고 있는 실정이나 대부분 저부가가치의 용도에 한정되어있어 앞으로 용도개발에 많은 관심을 가져야 할것으로 생각된다.

  • PDF

Community Distribution on Forest Vegetation of the Hyangjeokbong in the Deogyusan National Park (덕유산 국립공원 향적봉 일대 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Oh, Jang-Geun;Kim, Chang-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.289-300
    • /
    • 2013
  • Forest vegetation of Hyangjeokbong (1,614 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, shrub forest, grassland forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 122 communities of mountain forest vegetation and 2 communities of riparian forest, the total of 124 communities were researched; the distributed colonies classified by physiognomy classification are 42 communities deciduous broad-leaved forest, 37 communities of valley forest, 8 communities of coniferous forests, 6 communities of subalpine coniferous forest, 3 communities of shrub forest, 1 communities of grassland forest, 21 afforestation and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 47.02 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 57.48 percent of mountain valley forest, Pinus densiflora community holds 77.53 percent of mountain coniferous forest holds, and Taxus cuspidate-Abies koreana community takes up about 50 percent of subalpine coniferous forest. Mountain shrub forest and mountain grassland forest vegetation are concentrated mainly on the top of Hyangjeokbong and the ridge connecting the top and Jungbong. Meanwhile, riparian forest vegetation comprises 0.024% of the whole vegetation area in a study area. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora, Abies koreana and Taxus cuspidata are distributed as dominant species of the uppermost part in a forest vegetation region in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, in respect of subalpine coniferous forest, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Development of the Pinus densiflora Community Planting Model in the Central Cool Temperate Zone of Korea (한국 온대중부지역 소나무림 군락식재모델 개발 연구)

  • Hong, Suk-Hwan;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.107-114
    • /
    • 2010
  • This study was undertaken to suggest a Pinus densiflora community planting model in the central cool temperate zone of Korea and nearby areas. For the purpose of this study, we surveyed various DBH classes of the P. densiflora community in Dangjin-gun, Choongchungnam-do. We surveyed the size of entire individuals in the 92 plots as well as surveyed the location of individuals in each tree layer and sub-tree layer(1/100 scale) of 44 plots using a quadrant method from young to old communities. As a result of analysis, the tree layer was growing well but the basal areas of the subtree layer were less than 10% compared with the tree-layer. This indicates the subtree layer is not in general growing well in the P. densiflora community. There were no significant patterns in the shrub layer. A P. densiflora community planting would consist of a tree layer and a shrub layer and the finding of growth patterns of the tree layer is significant. In order to make a model of the shrub layer, an additionally survey of another shrub layer is needed in a nearby planting area. Both regression models, 1) between tree layer DBHs and individuals per unit area, and 2) between individuals per unit area and shortest distances of individuals, can yield much information through study.

Community Distribution on Mountain Forest Vegetation of the Youngbong Area in the Worak National Park, Korea (월악산국립공원 영봉 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jang, In-Soo;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.51-60
    • /
    • 2015
  • Forest vegetation of Youngbong (1,094 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 84 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 91 communities were researched; mountain forest vegetation classified by physiognomy classification are 39 communities deciduous broad-leaved forest, 26 communities of mountain valley forest, 6 communities of coniferous forests, 2 communities of riparian forests, 11 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis communities account for 40.879 percent of deciduous broad leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 25.627 percent of mountain valley forest, Pinus densiflora community holds 75.618 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus mandshurica, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis and Fraxinus mandshurica which are climax species in the area.

The Analysis of Amphibia Biodiversity and Habitat in the Moak Provincial Park (모악산 도립공원의 양서류 다양성 및 서식환경 분석)

  • Chung, Kyu-Hoi;Shim, Jae-Han;Song, Jae-Young
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.4
    • /
    • pp.278-281
    • /
    • 2001
  • Ecological measurement and biological environment of the Moak Provicial Park surveyed based on the habitat; deciduous broad leaved forest (Quercus mongolica variabilis-Pinus densiflora, Capinus tschonoskii, Quercus Mongolica, Quercus acutissima-Pinus densiflora, and Quercus variabilis), coniferous forest (Pinus densiflora), plantation forest (Pinus rigida), and the other place (pond, lake, rice field, stream, and river). Totally, 1 orders, 4 families, 8 species of amphibians were found at Mt. Moak provincial park. Biodiversity indices of studied region were as follow; richness was 1.270, diversity was 1.775, and evenness was 0.853 in amphibians. 42.1% of amphibians were found in deciduous broad leaved forest, 11.3% in coniferous forest, 1.6% in plantation forest, and 45.0% in the other region.

  • PDF

Community Distribution on Forest Vegetation of the Geochilbong Area in the Deogyusan National Park, Korea (덕유산 국립공원 거칠봉 일대 삼림식생의 군락분포에 관한 연구)

  • Oh, Jang-Geun;Kim, Chang-Hwan;Lee, Nam-Sook;Gin, Yu-Ri
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.449-459
    • /
    • 2013
  • Forest vegetation of Geochilbong (1,177 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 89 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 93 communities were researched; the distributed colonies classified by physiognomy classification are 32 communities deciduous broadleaved forest, 21 communities of valley forest, 12 communities of coniferous forests, 24 afforestation and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 56.54 percent of deciduous broad-leaved forest, Fraxinus mandshurica, Cornus controversa community takes up 46.58 percent of mountain valley forest, Pinus densiflora community holds 74.98 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Geochilbong in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

The Improvement Effect of Pinus densiflora Forest Disturbed by Human Trampling in the Solbat Neighborhood Park, Gangbuk-gu, Seoul (서울시 강북구 솔밭근린공원 소나무림 답압 피해 개선사업 효과 연구)

  • Kwon, Ki-Young;Han, Bong-Ho;Park, Seok-Cheol;Choi, Jin-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.148-159
    • /
    • 2012
  • The purpose of this study is to validate the effect of improvement such measures as fence installation or planting of bush and herbaceous plants taken from Pinus densiflora forest in Solbat Neighborhood Park in Seoul, which was damaged by stamping. The study was conducted in 2005 and 2010 in order to analyze changes in planting types, planting structure of Pinus densiflora forest, soil hardness, cross-sectional structure of soil, and physicochemical characteristics of soil. It was also measured by the growth of the branches and the diameter of Pinus densiflora, comparing before and after the improvement to study the effect of restoring Pinus densiflora forest damaged by stamping. When it comes to a change in planting type, Pinus densiflora forest without underlay was reduced from 48.5% in 2005 to 6.8% in 2010. Pinus densiflora forest with bush and herbaceous plants was increased dramatically from 7.4% to 46.8%. Regarding planting structure, in most area of the subject site, Pinus densiflora forest without under layer was transformed into the one with bush and herbaceous plants including Rhododendron mucronulatum, Rhododendron schippenbachii, Hemerocallis fulva, Aceriphyllum rossii, Hosta plantaginea growing in a wide area. The soil in the Solbat Neighborhood Park was very stiff with soil hardness of $54.8kg/cm^2$ in average. After the improvement efforts made in the Park in 2010, the soil hardness was mostly less than $4kg/cm^2$, being in a good condition with little influence on the growth of plants. When it comes to the cross-sectional structure of soil, litter layer didn't exist in 2005 because of stamping and the organic matter layer was only 1.0cm thick, which provided an unfavorable condition for plant growth. However, after improvement, litter layer was formed up to 3.0cm and thickness of the organic matter layer also went up to 1.5~8.0cm in 2010 because the damage from stamping was reduced. Concerning the physicochemical characteristic of soil, in 2005 soil showed pH 5.76~6.70, organic matter content 7.15~10.55%, and available phosphorus 9.38~26.47mg/kg, having no big problems as a soil environment for growth of Pinus densiflora. 15 trees of Pinus densiflora were selected to see branch growth and it was found that the branches tended to grow better after improvement. 70 trees of Pinus densiflora from various grades of soil hardness also were selected to identify changes of diameter growth. In most cases, it was analyzed that Pinus densiflora grew better after improvement. After conducting this study, it was validated that such measures as fence installation or planting of bush and herbaceous plants to restore Pinus densiflora Forest damaged by stamping were effective in improving growth of Pinus densiflora.