• Title/Summary/Keyword: 식재구조

Search Result 204, Processing Time 0.031 seconds

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

A Study on Decreasing Effects of Ultra-fine Particles (PM2.5) by Structures in a Roadside Buffer Green - A Buffer Green in Songpa-gu, Seoul - (도로변 완충녹지의 식재구조에 따른 초미세먼지(PM2.5)농도 저감효과 연구 - 서울 송파구 완충녹지를 대상으로 -)

  • Hwang, Kwang-Il;Han, Bong-Ho;Kwark, Jeong-In;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.61-75
    • /
    • 2018
  • This study aims to verify the effect of green buffers, built as urban planning facilities on the reduction of ultra-fine particulate($PM_{2.5}$) and analyze changes in ultra-fine particles by structure, green volume and planting types of wayside green buffers, thus drawing the factors that can be used when green buffers are built to reduce ultra-fine particulate based on the results. This study selected Songpa-gu, and investigated 16 sites on 5 green buffers adjacent to two of Songpa-gu's main roads, 'Yangjaedaero' and 'Songpadaero'. This study divided all the green spaces into three different types-slope type, plain type and mounding type, and analyzed the mean green volume. As a result of measuring the concentration of $PM_{2.5}$, this study found that it was $55.5{\mu}g/m^3$ on average in winter, which was a harmful level according to the integrated environmental index provided by Seoul City, saying that levels above $50{\mu}g/m^3$ may have a harmful effect on sensitive groups of people. Particularly, the concentration of $PM_{2.5}$ was $38.6{\mu}g/m^3$ on average in spring, which exceeded the mean concentration of $PM_{2.5}$ in Seoul City in 2015. The mean concentrations of $PM_{2.5}$ in every investigation spot were $46.6{\mu}g/m^3$ for sidewalks, $45.5{\mu}g/m^3$ for green spaces and $42.9{\mu}g/m^3$ for residential areas, all of which were lower than $53.2{\mu}g/m^3$ for roads, regardless of the season. The concentration of $PM_{2.5}$ for residential areas was the lowest. In the stage of confirming the effect of green buffers, this study analyzed the correlation between the green volume of vegetation and the fluctuated rate of ultra-fine particles. As a result, it was found that the green coverage rate of trees and shrubs was related to the crown volume in every investigation spot but were mutually and complexly affected by each other. Therefore, this study judged that the greater the number of layers of shrubs that are made, the more effective it is in reducing the concentration of $PM_{2.5}$. As for seasonal characteristics, this study analyzed the correlation between the concentration of $PM_{2.5}$ for residential areas in winter and the green coverage rate of each green space type. As a result, this study found that there was a negative correlation showing that the higher the shrub green coverage rate is, the lower the concentration value becomes in all the slope-type, plain-type and mounding-type green spaces. This study confirmed that the number of tree rows and the number of shrub layers have negative correlations with the fluctuated concentration rate of $PM_{2.5}$. Especially, it was judged that the shrub green volume has greater effect than any other factor, and each green space type shows a negative correlation with the shrub coverage rate in winter.

Turbulence Modeling considering the Effects of Submerged Vegetation Flows (침수식생 흐름의 특성을 반영한 난류모델링)

  • Song, Youngdae;Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.127-127
    • /
    • 2017
  • 침수식생이 식재된 개수로에서 식생밀도에 따라 유동 및 난류의 특성이 변화된다. 이러한 특성은 식생에서의 유사, 영양물질, 용존 산소 등에 영향을 미치며 수중 생물의 서식에 변화를 준다. 따라서 침수식생이 식재된 개수로 흐름을 이해하는 것은 중요하게 여겨지고 있으며 많은 선행연구자들에 의해 실험 및 수치모의를 통해 활발히 연구되고 있다. 하지만 대부분의 RANS(Reynolds-Averaged Navier-Stokes)를 기반으로 한 선행연구에서는 침수식생의 흐름 특성을 반영하지 않은 모형을 이용하여 정확한 모의 결과를 도출하지 못 하였다. 이에 정확한 침수식생 흐름을 수치모의하기 위해서는 침수식생 흐름의 특성을 반영한 지배방정식을 이용해야 한다. 본 연구의 목적은 침수식생 흐름의 특성을 RANS 모형 중의 하나인 SA (Spalart-Allmaras) model에 반영하고, 식생밀도에 따른 유동 및 난류량을 실측치와 비교하는 것이다. RANS 방정식을 이용하여 난류모델링을 하였으며, 난류폐합문제를 해결하기 위해서 modified SA model을 이용하였다. 침수식생에서의 흐름을 해석하기 위해 운동량방정식에 식생항력을 추가하였다. 선행연구자의 식생수로 실험을 바탕으로 모형검증을 하였으며, 식생밀도에 따라 평균유속 및 난류구조를 확인하였다.

  • PDF

Techniques for Characterizing Surface Deterioration of Epoxy Exposed to Ozone Damage (오존에 노출된 에폭시 코팅재의 표면 열화특성 평가기술)

  • Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.167-177
    • /
    • 2014
  • New technologies for water purification are continuously emerging to address global water quality problems, and one such technology involves advanced hermetic water purification facilities made by concrete that utilize ozone treatment processes. Better knowledge about surface deterioration of epoxy coating exposed to ozone treatment is needed as a foundation for development of improved methods and materials in the future. This study utilized atomic force microscopy (AFM), nanoindentation methods, and existing indirect methods such as visual observation, changes in mass, surface observation and chrominance analysis, to evaluate epoxy water-resistance and anti-corrosiveness. This study considered six different epoxy formulations to assess typical degradation characteristics of epoxy surfaces with regard to water-resistance/anti-corrosiveness. AFM and nanoindentation techniques emerged as promising direct methods with potential to provide quantitative measures of surface quality that are improvements upon existing indirect methods. The experiments also confirmed that some of the epoxy-coatings were severely iMPacted by ozone exposure, and thus the results demonstrate that concern about such deterioration is justified.

Plant Growth Responses and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System (벽면형 식물바이오필터 내 식물 생육 및 실내공기질 정화)

  • Jung, Seul Ki;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.665-674
    • /
    • 2015
  • The final goal of this research is to develop a botanical biofiltration system, which combines green interior, biofiltering, and automatic irrigation, which can purify indoor air pollutants according to indoor space and the size of biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be more suitable for indoor space utilization. This study was performed to compare indoor air quality between the space adjacent to a botanical biofilter and the space away from the biofilter (control) without generation of artificial indoor air pollutants, and to evaluate plant growth depending on multiple floors within the biofilter. Each concentration of indoor air pollutants such as TVOCs, monoxide, and dioxide in the space treated with the biofilter was lower than that of control. Dracaena sanderiana ‘Vitoria’ and Epipremnum aureum ‘N Joy’ also showed normal growth responses regardless of multiple floors within the biofilter. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was effective for indoor air purification.

Development of the Pinus densiflora Community Planting Model in the Central Cool Temperate Zone of Korea (한국 온대중부지역 소나무림 군락식재모델 개발 연구)

  • Hong, Suk-Hwan;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.107-114
    • /
    • 2010
  • This study was undertaken to suggest a Pinus densiflora community planting model in the central cool temperate zone of Korea and nearby areas. For the purpose of this study, we surveyed various DBH classes of the P. densiflora community in Dangjin-gun, Choongchungnam-do. We surveyed the size of entire individuals in the 92 plots as well as surveyed the location of individuals in each tree layer and sub-tree layer(1/100 scale) of 44 plots using a quadrant method from young to old communities. As a result of analysis, the tree layer was growing well but the basal areas of the subtree layer were less than 10% compared with the tree-layer. This indicates the subtree layer is not in general growing well in the P. densiflora community. There were no significant patterns in the shrub layer. A P. densiflora community planting would consist of a tree layer and a shrub layer and the finding of growth patterns of the tree layer is significant. In order to make a model of the shrub layer, an additionally survey of another shrub layer is needed in a nearby planting area. Both regression models, 1) between tree layer DBHs and individuals per unit area, and 2) between individuals per unit area and shortest distances of individuals, can yield much information through study.

Effect of substrate composition on the growth of roses and hydrangeas in artificial ground (인공지반에서 식재지반의 구성이 장미와 수국의 생장에 미치는 영향)

  • You, Soojin;Han, Seung Won;Kim, Kwang Jin;Jeong, Na Ra;Yun, Ji Hye
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.658-666
    • /
    • 2020
  • The purpose of this study was to select a suitable planting substrate for multilayered plantings in an apartment landscape space. The experiment was conducted between May to October 2019, at the National Institute of Horticultural and Herbal Science. Planting substrate was prepared in six repetitions of eight treatment zones using mulching material, horticultural soil, bottom ash, and subgrade soil. Rosa hybrid 'Barkarole' and Hydrangea macrophylla 'Nikko Blue' were selected as the experimental plants. We investigated the monthly variation and effect of the substrate type on the growth (plant height, number of branches, leaf length, leaf width, and plant area of the substrates) of the plants. In R. hybrid 'Barkarole' grown in 20 cm of horticultural soil and 10 cm of bottom ash, the plants were taller(102.2±5.8 cm), had more branches (5.5±0.6 each), longer leaves (10.9±1.0 cm), and greater leaf width (6.2±0.5 cm) and plant area (4077.1±416.6 cm2)(p<0.05). H. macrophylla 'Nikko Blue' showed the best growth from 3cm of mulching, 20cm of horticultural topsoil, and 10cm of bottom ash, which resulted in taller plants (43.6±2.1 cm), more branches (4.9±0.8 each), longer leaves (7.2±0.5 cm), and greater leaf width(4.3±0.3 cm) and plant area (344.5±43.2 cm2). Through this study, it was possible to propose an optimal planting substrate for shrubs for multi-layered landscaping.

Fertilization Effects on Soil Properties, Understory Vegetation Structure and Growth of Pinus densiflora Seedlings Planted after Forest Fires (산불피해지에 식재 조림된 소나무임분의 시비처리에 따른 소나무 묘목의 생장, 토양특성 및 하층식생 구조의 변화)

  • Won, Hyung-kyu;Lee, Yoon Young;Jeong, Jin-Hyun;Koo, Kyo-Sang;Lee, Choong-Hwa;Lee, Seung-Woo;Jeong, Yong-Ho;Kim, Choonsig;Kim, Hyungho
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.334-341
    • /
    • 2006
  • This study was to investigate the growth of planted red pine (Pinus densiflora S. et. Z.) seedling, soil properties and understory vegetation structure after fertilizer treatments [unfertilized plot (control), CF plot (Combination Fertilizer), UF plot (Urea Formaldehyde Fertilizer)] in a Pinus densiflora stand planted after the forest fires in Gosung, Gangwon province. The height growth rates of seedlings in four years were 264% in unfertilized, 404% in CF, and 388% in UF plots, respectively. The root collar diameters were increased 340% in unfertilized, 454% in CF, and 427% in UF plots, respectively. No significant changes occurred in soil total nitrogen and potassium ion ($K^+$) with the fertilization. However, available $P_2O_5$, content in the soil surface (0-15 cm) increased with the fertilizer application. Soil organic matter increased significantly with fertilizer treatments, while gradual decrease occurred in unfertilized plots. Sodium ion ($Na^-$) decreased in all sites. Soil pH, CEC, calcium ion ($Ca^{2+}$) and magnesium ion ($Mg^{2+}$) contents were not significantly different among treatments. Although Shannon's species diversity index and species richness in understory vegetation did not change with fertilizer treatments, vegetation cover rates in forest floor increased significantly with the fertilization. These results suggest that the increase of pine seedling growth and vegetation cover rates with fertilization could enhance soil stabilization in forest tire areas.

Depth-averaged 2-D numerical model for the vegetated open-channel flows (식생된 개수로에서의 수심 평균된 2차원 수치모형)

  • Kim, Tae-Beom;Choi, Sung-Uk;Jeon, Woong-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1378-1382
    • /
    • 2007
  • 과거에는 치수적인 측면에서 하상과 둔치에 자생하는 식생이 홍수시 하천의 통수능을 줄인다는 이유로 기피 대상이 됐으나, 근래에 들어 생활수준의 향상과 더불어 국민의 여가생활에 있어서 하천의 친환경적인 역할이 증대되고 있다. 하천에서의 식생은 토사의 침식을 억제하여 탁도를 줄이며, 수중야생 동 식물들의 서식처를 제공하고, 제방의 식생은 제방의 안정에 기여한다. 뿐만 아니라 식생은 첨두홍수량을 줄이는데 기여하고, 유출에 의한 오염물질을 여과시킨다. 과거에는 하천 식생을 고려하기 위해 Manning 공식 등을 이용하여 단순히 경험적으로 조도계수만을 증가시키는 방법을 사용하였다. 단순히 조도계수를 증가시킬 경우, 식생이 수로에 존재하면 전체적인 흐름저항은 증가하지만, 하상 전단력은 감소한다는 개념과 맞지 않게 된다. 또한 기존 식생수로에 관한 연구의 초점은 주로 수직모형에 의한 수직 흐름구조 변화에 있어 왔다. 하지만 수직모형을 실제 자연하천에 적용하기란 쉽지 않고, 실무적인 측면에서 비실용적이다. 따라서 본 연구에서는 실무적으로 적용성 및 활용도가 높은, 식생항력 개념을 적용시킨, 수심 평균된 2차원 수치모형을 개발하였으며, 직선수로에 식재구간을 설정하여 식생에 의한 흐름특성 변화를 살펴보았다. 식생이 존재함으로써 수면의 상승이 유발되었고, 비식재 구간에서의 평균유속이 상대적으로 높은 증가율을 보였다.

  • PDF

A Necessity at Introducing the Volume Ratio in the Computation Vegetated Flow (식생흐름 계산에서 체적비 도입의 필요성)

  • Kim, Mujong;Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.177-177
    • /
    • 2015
  • 개수로에서 식생은 항력을 발생하여 평균유속을 감소시킬 뿐만 아니라, 식생영역과 비식생영역의 경계에서 유속 차를 발생시켜 일반 개수로 흐름보다 복잡한 흐름구조를 형성한다. 또한, 식생은 개수로 흐름에서 부피를 차지하여 식생영역의 유량을 감소시킨다. 일반적으로 식생이 식재된 개수로 흐름을 수치모의 할 경우 체적비를 고려하지 않을 때가 많다. 하지만 물과 식생의 체적비가 높을 경우, 식생에 의한 부피를 고려하지 않으면 실제 유속을 과다산정 하여 흐름모의가 정확하지 않다. 그러므로 식생이 있는 흐름을 정확히 수치모의하기 위해 식생의 체적비를 고려하여 실제 유속을 산정하는 것은 매우 중요하다. 본 연구에서는 식생된 개수로 흐름의 수치모의에서 체적비 도입의 필요성을 분석하였다. $k-{\varepsilon}$ 난류모형을 이용하여 수치모의를 수행하였고, 지배방정식에 식생항을 추가하여 식생이 식재된 개수로 흐름을 모의하였다. 식생 체적비를 고려하기 위해 지배방정식에 식생 체적비에 관한 항을 추가하였다. 체적비 도입의 필요성을 알아보기 위해 선행연구의 침수식생 실험수로를 대상으로 수치모의하였다. 식생밀도가 낮은 경우 식생 체적비의 고려 유 무가 모의결과에 미치는 영향이 작았으나, 식생밀도가 높은 경우에는 식생 체적비를 고려한 경우가 보다 정확한 모의결과를 도출 할 수 있었다.

  • PDF