• Title/Summary/Keyword: 식물정화기술

Search Result 69, Processing Time 0.032 seconds

Remediation of Polluted Soil by Plant (유용식물을 이용한 오염토양 정화기술 개발)

  • 이상환;이문용;현승훈;윤영만;김정규;임수길
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.116-119
    • /
    • 1997
  • 광산지 및 쓰레기매립지의 오염토양을 정화하는데 식물의 이용가능성을 평가하기 위하여 강원도, 경상북도 지역에 분포하는 17곳의 폐광산과 강원도에 분포하는 농촌형 일반 쓰레기매립지 6곳을 대상으로 광산지와 매립지의 토양 특성을 조사하고, 서식 식물종의 오염 물질 제거 능력과 개척종으로서의 가능성을 평가하였다. 광산지 토양의 경우 산성화가 진행된 곳이 많았고, 중금속함유량도 전국 토양의 평균함유량보다 훨씬 높게 나타났으나, 매립지의 경우 약알카리성 토양이 많았고, 광산지와 달리 중금속 오염의 우려는 없었다. 오염토양에 서식하는 쑥을 포함한 14종의 식물체중에서 오염토양정화기술에 이용 가능한 유용식물로 Aremisia princeps(쑥), Micanthus sinensis(억새), Oenanthera odorata(달맞이 꽃)등이 중금속의 흡수력과 지상부로의 이행력이 큰 식물종으로 나타나 phytoremediation에 있어서 개척종으로 이용가능할 것으로 판단되었다.

  • PDF

Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects (중금속 오염 토양 정화를 위한 식물생장촉진세균: 특성, 활용 및 전망)

  • Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.399-422
    • /
    • 2020
  • Remediating soils contaminated with heavy metals due to urbanization and industrialization is very important not only for human health but also for ecosystem sustainability. Of the available remediation technologies for heavy metal-contaminated soils, phytoremediation is a relatively low-cost environment-friendly technology which preserves biodiversity and soil fertility. The application of plant growth-promoting bacteria (PGPB) during the phytoremediation of heavy metal-contaminated soils can enhance plant growth against heavy metal toxicity and increase heavy metal removal efficiency. In this study, the sources of heavy metals that have adverse effects on microorganisms, plants, and humans, and the plant growth-promoting traits of PGPB are addressed and the research trends of PGPB-assisted phytoremediation over the last 10 years are summarized. In addition, the effects of environmental factors and PGPB inoculation methods on the performance of PGPB-assisted phytoremediation are discussed. For the innovation of PGPB-assisted phytoremediation, it is necessary to understand the behavior of PGPB and the interactions among plant, PGPB, and indigenous microorganisms in the field.

Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site (금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.327-332
    • /
    • 2019
  • Today's scientists try to remove heavy metals with many new technologies such as phytoremediation. One of the best cutting edge technologies is developing transgenic plants to remove certain heavy metal in soil. I constructed the transformation vector expressing T. goesingense Metal Transport Protein1 gene and TgMTP1: GFP genes. The transgenic plants were selected and confirmed the transformed genes into Arabidopsis thaliana genome. Expression was confirmed in several parts in Arabidopsis cells, tissues and organs. When TgMTP1 overexpressing Arabidopsis thaliana were subjected, transgenic plants showed higher heavy metal tolerance than non-transgenic. For further study I selected the transgenic plant lines with enhanced tolerance against four different heavy metals; Zn, Ni, Co, Cd. The accumulation of these metals in these plants was further analyzed. The TgMTP1 overexpressing Arabidopsis thaliana plant of selected lines are resistant against heavy metals. This plant is characterized by the expression of the MTP1 gene accumulating heavy metal in the vacuole and being simultaneously expressed on the plasma membrane. In conclusion, these plants may be used in plant purification applications, and as a plant with increased tolerance.

Estimating the Impact of Plant Surface Area Increase and Physiological Activities on Fine Dust Purification (식물에 의한 표면적 증가와 생리작용이 미세먼지 정화에 미치는 영향 추정)

  • Deuk-Kyun Oh;Sung-Soo Lim;Jeong-Ho Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.4
    • /
    • pp.426-433
    • /
    • 2024
  • In this study, to estimate the effects of plant-induced surface area increase and physiological activity on fine dust purification, a control group was set up. We utilized both foliage plants (Spathiphyllum wallisii) and artificial plants (shaped like Spathiphyllum wallisii) to measure and compare the purification time for fine dust. The results showed that the time required for fine dust purification in each experimental group decreased by 57-64% for Type AP and 31-32% for Type P compared to the control group. Subsequently, using a Linear Mixed Model (LMM), we tested the interaction between time and each experimental group, revealing statistically significant interactions between surface area increase and time(PM10 : t=3.123, p<0.05, PM2.5 : t=3.180, p<0.05), as well as physiological activity and time(PM10 : t=4.065, p<0.05, PM2.5 : t=4.307, p<0.05), indicating the presence of interactions between each factor and the time variable. Finally, we estimated the efficiency of fine dust purification by plant factors through nonlinear regression analysis. Compared to the control group without purification factors (Type C), it was estimated that surface area increase shortened the purification time by 1.40 times and physiological activity by an average of 1.95 times, resulting in a total 2.74 times shorter purification time. Based on these results, we hypothesized that physiological activity(transpiration and absorption) has a greater impact on fine dust purification than surface area increase(biosorption). Accordingly, we emphasize the importance of vegetation management practices such as pruning and irrigation management in green spaces aimed at fine dust purification.

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Mercury Stress (생분해되는 다양한 킬레이트들이 수은에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sangman
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.155-158
    • /
    • 2014
  • Phytoextraction is a technique that uses plants to remediate metal-contaminated soils. However, this technique cannot be applied in highly metal-contaminated areas, as plants cannot normally grow under such conditions. Therefore, this study investigated the introduction of various biodegradable chelating agents to increase the bioavailability of metals in highly metal-contaminated areas. Mercury (Hg) was selected as the target metal, while cysteine (Cys), histidine (His), malate, succinate, oxalate, citrate, and ethylenediamine (EDA) were used as biodegradable chelating agents. Plants were grown on agar media containing various chelating agents and Hg to analyze the effect on plant root growth. Cys and EDA were both found to diminish the inhibitory effect of Hg on plant root growth, whereas His, citrate, and ethylenediamine tetraacetic acid (EDTA) did not show any significant effects, and malate, succinate, and oxalate even promoted the inhibitory effect of Hg on plant root growth. Thus, Cys and EDA would seem to be promising biodegradable chelating agents for highly Hg-contaminated areas.

갯벌생태계의 수질정화기능 -여과식성 저서동물군집에 의한 입자성 유기물의 제거-

  • 이창근;홍재상
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.501-502
    • /
    • 2001
  • 갯벌의 수질정화기능에 대하여 다양한 정의를 내릴 수 있으나 본 연구에서는 갯벌의 여과식성 저서생물에 의해 수중의 동ㆍ식물 플랑크톤과 데트리터스를 포함하는 입자성 유기물 (POM)이 포집되어 제거되는 기능으로 그 범위를 한정하였다. 갯벌생태계에서 수질정화기능의 핵심적 역할은 단연 이매패류가 담당하고 있다. 이들은 탁월한 여과능력으로 먹이 섭식과정에서 많은 양의 해수를 아가미로 걸러내기 때문에 결과적으로 수층의 입자성 유기물을 물리적으로 제거시키는 자연 여과시스템에 견주어진다. (중략)

  • PDF

Rhizoremdiation of Petroleum Hydrocarbon-contaminated Soils and Greenhouse Gas Emission Characteristics: A Review (유류오염토양 근권정화기술 동향 및 온실가스 배출 특성)

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.99-112
    • /
    • 2020
  • Rhizoremediation, based on the ecological synergism between plant and rhizosphere microorganisms, is an environmentally friendly method for the remediation of petroleum hydrocarbon-contaminated soils. In order to mitigate global climate change, it is necessary to minimize greenhouse gas emissions while cleaning-up contaminated soils. In rhizoremediation, the main factors affecting pollutant remediation efficiency and greenhouse gas emissions include not only pollutant and soil physicochemical properties, but also plant-microbe interactions, microbial activity, and addition of amendments. This review summarizes the development in rhizoremediation technology for purifying oil-contaminated soils. In addition, the key parameters and strategies required for rhizoremediation to mitigate climate change mediation are discussed.

Bioremediation of Oil-Contaminated Soil Using Rhizobacteria and Plants (근권세균과 식물을 이용한 유류 오염 토양의 생물복원)

  • Kim Ji-Young;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2006
  • Phytoremediation is an economical and environmentally friendly bioremediation technique using plants which can increase the microbial population in soil. Unlike other pollutants such as heavy metals, poly-chlorinated biphenyl, trichloroethylene, perchloroethylene and so on, petroleum hydrocarbons are relatively easily degradable by soil microbes. For successful phytoremediation of soil contaminated with petroleum hydrocarbons, it is important to select plants with high removal efficiency through microbial degradation. In this study, we clarified the roles of plants and rhizobacteria and identified their species effective on phytore-mediation by reviewing the papers previously reported. Plants and rhizobacteria can degrade and remove the petroleum hydrocarbons directly and indirectly by stimulating each other's degradation activity. The preferred plant species are alfalfa, ryegrass, tall fescue, poplar, corn, etc. The microorganisms with a potential to degrade hydrocarbons mostly belong to Pseudomonas spp., Bacillus spp., and Alcaligenes spp. It has been reported that the elimination efficiency of hydrocarbons by soil microorganisms can be improved when plants were simultaneously applied. For more efficient restoration, it's necessary to understand the plant-rhizobacteria interaction and to select the suitable plant and microorganism species.

Phytoremediation Technology with Using Water Celery (Oenanthe stolonifer DC.) to Clean up Heavy Metals in the Contaminated Wastewater (미나리 재배에 의한 중금속 오염수의 식물정화)

  • Park, Jong-Sun;Han, Sung-Su;Yoon, Duck-Joong;Shin, Joung-Du
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The removal rate of heavy metals from the wastewater, the accumulation and translocation of heavy metals in plants after transplanting, and the responses of water celery growth with different wastewater treatments were investigated to determine the potential ability of green-remediation with hydroponic culture of water celery. The removal rate and translocation of Cd, Cu, Ni and Pb from different wastewater to plants were compared with cultivation periods after transplanting. The removal rate of heavy metals from wastewater was different with each treatment but increased with growing periods of water celery plants. The removal rate of Cd, Cu, Ni and Pb in Artificial solution, Artificial solution+EDTA, Munmark industrical wastewater, Jungsun minewater is ranged from 22 to 73%, from 28 to 100%, from 13 to 92% and from 41 to 100% at 6 days after transplanting, respectively. The translocations of Cd, Cu, Ni and Pb from roots to shoots in Artificial solution, Artificial solution+EDTA, Munmark industrical wastewater, Jungsun minewater are ranged from 14 to 28%. 8 to 30%. from 28 to 45% and from 2 to 15% at 12 days after transplanting, respectively. In plant growth responses, it appears to be inhibited the plant growth over all treatments excepts for Munmark industrial wastewater in these glowing periods. Therefore the water celery might play a useful role in phytoremediation to clean up wastewater contaminated with Cd, Cu, Ni or Pb.