• Title/Summary/Keyword: 식물뿌리상태

Search Result 121, Processing Time 0.031 seconds

Precision Measurement of Soil Moisture Content using Dual Radio Frequency Changes (고주파의 2개 주파수 변화를 이용한 토양수분 정밀측정)

  • 김기복;이승석;주대성
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.02a
    • /
    • pp.470-477
    • /
    • 2003
  • 토양에 함유된 수분은 식물의 생육뿐만 아니라 식물뿌리의 호흡, 미생물 활성 및 토양의 화학적 상태에 큰 영향을 미친다. 즉, 토양수분은 물에 용해된 무기물과 토양 내의 양분을 녹여 식물 뿌리로 흡수될 수 있도록 이동시키며, 토양 속의 온도를 조절하여 뿌리의 영양분 흡수 능력을 향상시키는 기능을 한다. 또한 토양 속으로 수분이 이동하면서 고갈된 산소를 공급하는 등의 중요한 기능을 하고 있다 (Hillel, 1980). 따라서 토양 내 수분이 과다하거나 부족한 경우 인위적으로 최적 상태의 함수비로 조절하는 물 관리 기술의 중요성이 대두되고 있으며 물 관리 기술의 개발에서 가장 중요한 기술 중의 하나는 토양의 수분 함량을 온라인으로 계측하는 것으로서 관개배구 자동화 기술의 핵심부분이라고 할 수 있다. (중략)

  • PDF

A Study on the Distribution of Underground Plant Biomass and its Effect on the Stream Bank Stability (농촌 소 하천 제방 상의 식물 근계 분포 현황에 따른 제방 지지 역할에 관한 연구 - 경남 진주시 농촌 소하천 유역의 대나무와 잔디를 대상으로 -)

  • Lee, Chun-Seok;Kim, Jung-Uk
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.1 s.9
    • /
    • pp.95-103
    • /
    • 1999
  • The purpose of this study is to find out the distribution of underground biomass and its soil stabilizing effects. Bamboo and grass were examined and compared. 1. Thirty 'soil & root' samples were collected to the depth of 30cm with Impact-corer, and then divided into three sections(0-10cm, 10-20cm, 20-30cm). Each piece had a volume of $950cm^3$ and the underground biomass was separated from the soil particles by washing with flowing water. The average underground biomass rates of bamboo and grass were 10.8% and 4% of each sample, respectively. The rate of grass root biomass declined with depth, but the bamboo root biomass was at peak at around 20cm depth. 2. The shear strength was measured with con-penetration tester at each sample collecting site. Three measurements were made at each depth(0-10cm, 10-20cm, 20-30cm) and were compared with the impact counts needed to insert the corer to the depth of 30cm. The shear strength has clear correlations with underground biomass. The more underground biomass, the higher shear strength. The shear strength of bamboo was about three times larger than the grass.

  • PDF

A Study on the Acid Drainage Neutralizing System for Ecological Vegetation on the Acid Drainage Slope (산성배수 비탈면의 생태적 녹화를 위한 산성배수 중화기법 연구)

  • Cho, Sung Rok;Shim, Sang Ryul;Kim, Jae Hwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • Research was initiated to find out acid drainage neutralizing techniques for ecological vegetative growth on the acid drainage slope. Four different acid drainage neutralizing techniques [no treatment, limestone layer treatment, phosphate treatment, and limestone layer + phosphate treatment] were treated on the acid drainage slope. There was a significant difference observed in treated acid neutralizing techniques for acidity, surface coverage rate, death rate and plant root status. Treated acid neutralizing techniques were effective for neutralizing acidity and vegetative growth in order of [first: limestone layer + phosphate treatment, second: phosphate treatment, third: limestone layer treatment and fourth: no treatment]. The limestone layer and the phosphate treatments were effective for neutralizing acidity and vegetative growth, respectively. However, the phosphate treatment was more effective compared to the limestone layer treatment on the acid drainage slope. We figured out that the phosphate treatment is more effective for neutralizing acidity and vegetative growth because of coating effect of sulfides.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Growth and Root Characteristics and P, K Uptake by Soybean under Different Soil Water Conditions (토양(土壤) 수분(水分)의 상태(狀態)가 대두(大豆)의 생육(生育) 및 근계발달(根系發達) 특성(特性)과 P, K 흡수(吸收)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik;Ha, Sang-Geun;Han, Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.8-15
    • /
    • 1992
  • An experiment was conducted to find out effect of soil water condition on shoot and root growth and P, K uptake by soybean plants. Soybean plants were grown under different soil water table levels, 20cm, 40cm and 60cm below the soil surface using minirhizotron with 20cm in diameter, and well irrigated and water stressed conditions using 1/2000a Waganer pots. Three soybean plants, Paldal culfivar, were grown and sampled at the early growing period, 37 days after planting, and at the harvesing period, 115 days after planting. Shoot and root growth were restricted by water stresed condition and by excessive soil water condition with the 20cm water table. Little difference in shoot and root growth were found between well irrigated condition and 40cm or 60cm water table conditions. The P and K contents in shoot under water stressed condition were higher than well irrigated condition at the early growing period but reversed at later harvesting period. The dry weight and length of roots were more severely restricted by water stress than those of shoots. Root morphological difference was found by anatomical observation. Normal cortex was developed under the well irrigated condition, while abnormal cortex with aerenchyma formed by lysis under excessive water conditions of 20 or 40cm water talbes. Aerenchyma was formed at outer skirt of pericycle. Role of formation of aerenchyma of soybean roots might be an adaptation to excessive soil water condition and possibly related to survival of soybean roots growing under near flooding condition on dikes of paddy lands.

  • PDF

Turfgrass Responses to Water Deficit: A Review (물 부족 현상으로 인한 잔디의 생리학적 반응: 리뷰)

  • Lee, Joon-Hee
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • Drought is a major limiting factor in turfgrass management. Turfgrass responses to water deficit depend on the amount and the rate of water loss as well as the duration of the stress condition. This review paper was designed to understand responses such as photosynthesis, canopy spectral reflectance, plant cell, root, hormone and protein alteration when turfgrass got drought stress. Furthermore, mechanisms to recover from drought conditions were reviewed in detail. However, there are still many questions regarding plant adaptation to water deficit. It is not clear that the mechanism by which plants detect water deficit and transfer that signal into adaptive responses. Turfgrass research should focus on the best management practices such as how to enhance the ability of self-defense mechanism through understanding plant responses by environmental stress.

Plantlet Regeneration by Tissue Cultures of Cyclamen persicum Mill. (시클라멘 (Cyclamen persicum Mill.)의 조직배양에 의한 식물체 재분화)

  • 은종선;김영선;한상권
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.479-484
    • /
    • 2000
  • This study was conducted to examine the effects of explant sources and plant growth regulators on mass propagation of Cyclamen persicum. Tuber, cotyledon, and petiole tissues were cultured on MS medium supplemented with different concentrations and combinations of auxins and cytokinins. Shoots were not induced from calli on cotyledon and petiole explants cultured on MS medium containing various concentrations of 2,4-D or NAA. However, multiple shoots were formed directly from tuber explants cultured on the medium containing 0.5 and 1.0 mg/L 2,4-D or NAA. In MS medium with cytokinin alone, TDZ was more effective in shoot formation than BA or kinetin in all explants. The combinations of NAA and BA was found to be most effective in shoot formation from tuber, cotyledon and petiole explants. Especially, shoots were formed from all the tuber explants on the medium containing 0.5 mg/L of NAA and BA. Hormonal effects on root formation were examined by subculturing single shoots on MS medium containing NAA or IBA. The medium with 0.5 mg/L IBA was most effective in root induction and subsequent plantlet regeneration.

  • PDF

Adventitious Bud Formation and Mass Propagation by Root and Propagation Medium of Wild Polygonatum odoratum Druce (야생 둥굴레의 뿌리와 배양토에 따른 대량번식과 부정아 발생)

  • 신동영;박종산;정연권;김학진;권병선;현규환
    • Korean Journal of Plant Resources
    • /
    • v.15 no.1
    • /
    • pp.8-17
    • /
    • 2002
  • To improve new propagation method, I try to propagate wild polygonatum odoratum roots which formate adventitious bud without bud. The obtained results of size of roots and adventitious bud to formate for multiple propagation of wild polygonatum odoratum as the follow. One year grown wild polygonatum odoratum root in 5cm diameter formate 66.5% adventitious buds. One year grown wild polygonatum odoratum root in 15cm in diameter germinate 113% adventitious bud. Two years grown root in 15cm diameter formate adventitious bud three times more then one year root. Wild polygonatum odoratum in 15cm diameter without any bud in experiment plot makes 4 times of propagation. Sand and Perlite media propagaton plot was increased 3.1∼3.3times more than common culture medium. The best result of mass propagation wild polygonatum odoratum is 10mm diameter root and 5cm cut in length to plant sand media plot.

First Report of Bacterial Root Rot Caused by Serratia plymuthica on Panax ginseng (Serratia plymuthica에 의한 인삼 세균뿌리썩음병 발생)

  • Jung, Won Kwon;Kim, Young Soo;Choi, Jin Kook;Kim, Seung-Han;Jang, Myeong-Hwan;Kwon, Tae Lyong;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • In August of 2011, a wilting disease of ginseng was observed at Bongwha, Gyeongbuk province, Korea. Affected plants initially show withering symptoms on leaves of ginseng. As the disease progresses, withering leaves spread downward, eventually encompassing the whole plant. Leaves lose vigor but remain pale green. Symptoms of roots were brown, and soft rots characterized by moist and watery decay of the whole ginseng root, which initiated as small brown, water-soaked lesions of hairy roots and enlarged to the entire roots. The causal organism isolated from the infected roots was identified as Serratia plymuthica based on its physiological and biochemical characteristics, by cellular fatty acid composition (GC-FAME), the utilization of carbon sources (BioLog System), and 16S rRNA sequence of the isolated bacterium were 99% homologous to those of Serratia plymuthica strains. Artificial inoculation of the bacterium produced the same brown or soft rot symptoms on the ginseng roots, from which the same bacterium was isolated. This is the first report of bacterial root rot caused by the Serratia plymuthica in ginseng in Korea. Serratia plymuthica has been used as antagonistic microorganism for biological control on several crop plants. But it was proved pathogen of ginseng at humid condition in this study.

Suppressive Effects of Crude Extracts of Bacillus sp. CT16 and Neobacillus sp. JC05 against Egg Hatch of Meloidogyne incognita (근권세균 Bacillus sp. CT16과 Neobacillus sp. JC05의 배양액 추출물에 의한 뿌리혹 선충의 알 부화 억제 효과)

  • Jang, Hwajin;Kim, Sang Tae;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.27 no.2
    • /
    • pp.61-65
    • /
    • 2021
  • Root-knot disease caused by Meloidogyne incognita is major soil pathogen and cause severe economic damages to vegetable crops. In this study, we selected rhizobacteria for biocontrol of the root-knot nematode, M. incognita, and identified; performed bioassay of the bacterial extracts in cucumber seedlings. The crude extracts of strains CT16 and JC05 out of 180 strains inhibited egg hatching and increased juvenile mortality in vitro assay; based on 16S rRNA sequences analysis, the two strains were identified as Bacillus sp. CT16, and Neobacillus sp. JC05. After extracting the bacterial supernatants by using various organic solvents, n-butanol and n-hexane extracts of strain CT16 and n-butanol extract of strain JC05 showed inhibitory activity of egg hatching depending on concentrations. Subsequently, n-butanol extracts of two strains significantly suppressed formation of egg masses in cucumber seedling. Therefore, these results indicated that strains CT16 and JC05 could be used as potential biocontrol agents against M. incognita.