• Title/Summary/Keyword: 시.공간 변동

Search Result 392, Processing Time 0.03 seconds

Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds (미계측유역의 수문모형 매개변수 추정을 위한 하이브리드 지역화모형의 개발)

  • Kim, Youngil;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.677-686
    • /
    • 2018
  • There remain numerous ungauged watersheds in Korea owing to limited spatial and temporal streamflow data with which to estimate hydrological model parameters. To deal with this problem, various regionalization approaches have been proposed over the last several decades. However, the results of the regionalization models differ according to climatic conditions and regional physical characteristics, and the results of the regionalization models in previous studies are generally inconclusive. Thus, to improve the performance of the regionalization methods, this study attaches hydrological model parameters obtained using a spatial proximity model to the explanatory variables of a regional regression model and defines it as a hybrid regionalization model (hybrid model). The performance results of the hybrid model are compared with those of existing methods for 37 test watersheds in South Korea. The GR4J model parameters in the gauged watersheds are estimated using a shuffled complex evolution algorithm. The variation inflation factor is used to consider the multicollinearity of watershed characteristics, and then stepwise regression is performed to select the optimum explanatory variables for the regression model. Analysis of the results reveals that the highest modeling accuracy is achieved using the hybrid model on RMSE overall the test watersheds. Consequently, it can be concluded that the hybrid model can be used as an alternative approach for modeling ungauged watersheds.

A Study on the application of design in field research methods of Land Characteristic Survey for Individual Land Prices (개별공시지가 토지특성조사를 위한 현장조사방법 설계 적용에 관한 연구)

  • Lee, Seong-Kyu;Bae, Sang-Keun;Jung, Dong-Hun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.73-90
    • /
    • 2014
  • The Officially Announced Land Price System has a limit, that is required to be able to reflect changes in land constantly every year, to implement Land Characteristic Survey for calculating land price during a specific period and human resources with limited. The purpose of this study is to apply the 'National Territory Space Usage status Survey' method to survey part of the territorial feature status information inside of selected the target sites, considering the core survey items (land category, the state of land use, altitude difference, standard site inclusion, etc) in the areas surrounding Yeonshinnae Station in which three dongs (Galhyeon-dong, Daejo-dong, Bulgwang-dong) of Eunpyeong-gu, Seoul share borders with. Based on the given budget, the manpower and period was taken into consideration to sort a total of 2,041 lots and conduct surveys on all sites. This study will be able to diagnose the efficient idle human resource utilization and work process construction plan through pilot projects specialized for providing real estate information services in preparation for cases in which national territory information survey projects that provide various business model, as well as major future core projects of the corporation will be carried out.

The Applicability of Minimum Entropy Deconvolution Considering Spatial Distribution of Sampling Points (지하수 함양량 추정시 공간상에서의 자료 Sampling 방법에 따른 Minimum Entropy Deconvolution의 적용성에 관한 검토)

  • Kim Tae-Hee;Kim Yong-Je;Lee Kang-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.52-58
    • /
    • 2006
  • Kim and Lee (2005) suggested Minimum Entropy Deconvolution (MED) to estimate the temporal sequence of the relative recharge. However this study by Kim and Lee (2005) was just related to the verification of the conceptual approach with MED. In this study, we try to characterize the applicability of MED in the case of spatially heterogeneous recharge (distance from recharge area). Simulated results were recorded with some specific sampling points. Estimated results from this study show higher than 0.8 in cross-correlation with the original recharge sequence. In addition, the physical and mathematical meanings of the applied filter length was also investigated. It was revealed that the length of filter is highly related to the spatial distance between recharge area and the monitoring site, and the apparent shape of hydraulic head change.

Parameter Estimation of a Distributed Hydrologic Model using Parallel PEST: Comparison of Impacts by Radar and Ground Rainfall Estimates (병렬 PEST를 이용한 분포형 수문모형의 매개변수 추정: 레이더 및 지상 강우 자료 영향 비교)

  • Noh, Seong Jin;Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1041-1052
    • /
    • 2013
  • In this study, we estimate parameters of a distributed hydrologic model, GRM (grid based rainfall-runoff model), using a model-independent parameter estimation tool, PEST. We implement auto calibration of model parameters such as initial soil moisture, multipliers of overland roughness and soil hydraulic conductivity in the Geumho River Catchment and the Gamcheon Catchment using radar rainfall estimates and ground-observed rainfall represented by Thiessen interpolation. Automatic calibration is performed by GRM-MP (multiple projects), a modified version of GRM without GUI (graphic user interface) implementation, and "Parallel PEST" to improve estimation efficiency. Although ground rainfall shows similar or higher cumulative amount compared to radar rainfall in the areal average, high spatial variation is found only in radar rainfall. In terms of accuracy of hydrologic simulations, radar rainfall is equivalent or superior to ground rainfall. In the case of radar rainfall, the estimated multiplier of soil hydraulic conductivity is lower than 1, which may be affected by high rainfall intensity of radar rainfall. Other parameters such as initial soil moisture and the multiplier of overland roughness do not show consistent trends in the calibration results. Overall, calibrated parameters show different patterns in radar and ground rainfall, which should be carefully considered in the rainfall-runoff modelling applications using radar rainfall.

Future Projections of Köppen Climate Shifts in the Asia Regions Using A2 Scenario (A2 시나리오를 이용한 아시아 지역 기후대의 변화 전망)

  • Shin, Sang Hoon;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.253-265
    • /
    • 2013
  • The objective of this study is to analyse the current climate zone applied by K$\ddot{o}$ppen climate classification and the future climate zone projected by the A2 scenario in Asia regions. The spatial and temporal variations of precipitation and temperature were also analyzed. As regards to the result of analysis on the variation of climate factor, temperature and precipitation will be increasing $4.0^{\circ}C$ and 12% respectively in the 2080s comparing with the reference period (1991~2010). Spatially, the range of temperature increase on the high latitude area is higher than that on the low latitude area. The precipitation will be increasing averagely in the overall area, but the spatial unequal distribution of precipitation will be intensified. At the result of the future climate zone, the area of warm climates will be increasing while the area of cold climates will be decreasing. In 2080s, the temperature will be increasing as much as 7.2% and 1.9% on the Tropical climates and Arid climates respectively, but it will be decreasing as -2.4%, -4.9% and -1.8% on the Warm temperate climates, Cold climates and Polar climates respectively. Furthermore, the part of Savannah climates and Desert climates will be mostly increasing. It is mainly caused by the temperature increase and desertification impact according to global warming.

Spatio-temporal Fluctuation of Phytoplankton Size Fractionation in the Uljin Marine Ranching Area (UMRA), East Sea of Korea (동해 울진 바다목장해역의 크기별 식물플랑크톤 생물량의 시·공간적 분포 특성)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.151-160
    • /
    • 2016
  • To understand size fractioned chlorophyll a and material cycles of coastal ecosystem in Uljin marine ranching area (JMRA) of East Sea, 4 times of survey were conducted from April to November 2008. Picoplankton, nanoplankton and netplankton in the surface of UMRA fluctuated with an annual mean of $0.26{\mu}g\;L^{-1}$ between the lowest value of $0.03{\mu}g\;L^{-1}$ and the highest value of $0.87{\mu}g\;L^{-1}$, annual mean $1.32{\mu}g\;L^{-1}$ between $0.11{\mu}g\;L^{-1}$ and $5.60{\mu}g\;L^{-1}$, annual mean $0.45{\mu}g\;L^{-1}$ between no detected (nd) and $4.68{\mu}g\;L^{-1}$, respectively. And the relative ratio of picoplankton, nanoplankton and netplanktons on the phytoplankton biomass was on annual average 12.9%, 65.0% and 22.1%, respectively. The 10 m layer was similar to the surface. The relative ratio of pico- and nano-plankton was higher throughout the year. That is, the material cycle of UMRA consists of a microbial food web rather than traditional food chain at a lower trophic levels. Primary production is deemed to have a higher possibility of being adjusted by top-down dynamics, such as micro-zooplankton grazing pressure rather than nutrients supply.

Seasonal Variation of Primary Productivity and Pigment of Phytoplankton Community Structure in the Seomjin Estuary (섬진강 하구역의 계절별 일차생산력 및 식물플랑크톤 색소 조성 변화)

  • Min, Jun-Oh;Ha, Sun-Yong;Chung, Mi-Hee;Choi, Bo-Hyung;Lee, Yeon-Jung;Youn, Seok-Hyun;Yoon, Won-Duk;Lee, Jae-Seong;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.139-149
    • /
    • 2012
  • Four in situ incubation experiments were conducted in May, August and November 2009, as well as February 2010 to determine the seasonal primary productivity and the community structure of phytoplankton at the Seomjin estuary. The primary production of phytoplankton ranged from 9 to 3560 mgC $m^{-2}\;d^{-1}$. Primary productivity was the highest in the summer season (August), which was influenced by improved optical and temperature conditions of the water, as well as the supply of nutrients derived from its surrounding watershed. Particularly, the upper station (SJ-1, SJ-2) of Seom-jin estuary showed a higher productivity, as a result of inflow of input nutrients originated from the terrestrial source. The fucoxanthin, as an index pigment of diatoms showed the highest concentration (0.74~9.51 ${\mu}g\;L^{-1}$) at all stations, occupying 30~80% to total Chl a concentrations. The phytoplankton species composition determination, using a microscope showed similar results to the pigment analysis, which indicated diatom Skeletonema costatum, as the dominant species. The primary productivity in Seom-jin estuary indicates temporally and spatially large variation, according to different environmental conditions. Also, Skeletonema costatum has euryhaline features with relatively higher contribution.

Study on Runoff Variation by Spatial Resolution of Input GIS Data by using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형의 입력자료 해상도에 따른 유출변동 연구)

  • Jung, Chung Gil;Moon, Jang Won;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.767-776
    • /
    • 2014
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Floods are one of the most deadly and damaging natural disasters known to mankind. The flood forecasting and warning system concentrates on reducing injuries, deaths, and property damage caused by floods. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall-runoff model. In this study, grid resolution depending on the topographic factor in rainfall-runoff models presents how to respond. semi-distribution of rainfall-runoff model using the model GRM simulated and calibrated rainfall-runoff in the Gamcheon and Naeseongcheon watershed. To run the GRM model, input grid data used rainfall (two event), DEM, landuse and soil. This study selected cell size of 500 m(basic), 1 km, 2 km, 5 km, 10 km and 12 km. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, runoff volume and peak discharge which simulated cell size of DEM 500 m~12 km were continuously reduced. that results showed decrease tendency. However, input grid data except for DEM have not contributed increase or decrease runoff tendency. These results showed that the more increased cell size of DEM make the more decreased slope value because of the increased horizontal distance.

Comparison of CH4 Emission by Open-path and Closed Chamber Methods in the Paddy Rice Fields (벼논에서 open-path와 closed chamber 방법 간 메탄 배출량 비교)

  • Jeong, Hyun-cheol;Choi, Eun-jung;Kim, Gun-yeob;Lee, Sun-il;Lee, Jong-sik
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • The closed chamber method, which is one of the most commonly used method for measuring greenhouse gases produced in rice paddy fields, has limitations in measuring dynamic $CH_4$ flux with spatio-temporal constrains. In order to deal with the limitation of the closed chamber method, some studies based on open-path of eddy covariance method have been actively conducted recently. The aim of this study was to compare the $CH_4$ fluxes measured by open-path and closed chamber method in the paddy rice fields. The open-path, one of the gas ($CO_2$, $CH_4$ etc.) analysis methods, is technology where a laser beam is emitted from the source passes through the open cell, reflecting multiple times from the two mirrors, and then detecting. The $CH_4$ emission patterns by these two methods during rice cultivation season were similar, but the total $CH_4$ emission measured by open-path method were 31% less than of the amount measured by closed chamber. The reason for the difference in $CH_4$ emission was due to overestimation by closed chamber and underestimation by open-path. The closed chamber method can overestimate $CH_4$ emissions due to environmental changes caused by high temperature and light interruption by acrylic partition in chamber. On the other hand, the open-path method for eddy covariance can underestimate its emission because it assumes density fluctuations and horizontal homogeneous terrain negligible However, comparing $CH_4$ fluxes at the same sampling time (AM 10:30-11:00, 30-min fluxes) showed good agreements ($r^2=0.9064$). The open-path measurement technique is expected to be a good way to compensate for the disadvantage of the closed chamber method because it can monitor dynamic $CH_4$ fluctuation even if data loss is taken into account.

Analysis of Macrobenthic Community Structure in an Intertidal Flat in Hakseong-ri, Boryeong, Korea (보령 학성리 갯벌 조간대 대형저서동물 군집구조 분석)

  • YANG, DONGWOO;LEE, JUNG-HO;KIM, HARYUN;BAE, HANNA;PARK, JINSOON;KIM, HYE SEON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.167-182
    • /
    • 2021
  • This study was carried out to investigate temporal and spatial distribution of macrobenthic community and elucidate effects of environmental factors on change of community structure in an intertidal flat, Hakseong-ri, Boryeong, Korea. Field surveys were seasonally conducted to collect samples of sediment and macrobenthos using can core in triplicate at nine stations in 2016 and 2017. Our results showed that sediment had high mud content (above 60%) in most samples and mean content of loss on ignition was 2.3% in 2016. A total of 79 species was collected in the study site during the study period. Mean density and biomass were 611 ind./m2 and 64.1 gWWt/m2, respectively. Heteromastus filiformis was the dominant species (48.6%, 297 ind./m2) followed by Macrophthalmus japonicus (10.1%, 62 ind./m2) and Upogebia major (6.9%, 42 ind./m2). Three assembly groups resulted from cluster analysis were more distinguished by interaction between organisms and frequency of dominant species than by physical and chemical environment characteristics. In addition, macrobenthic community in the Hakseong intertidal flat showed seasonal changes based on non metric multidimensional scaling using species abundance.