• Title/Summary/Keyword: 시험 비행

Search Result 971, Processing Time 0.031 seconds

Prediction of the Blade Flapping Angle for Korean Utility Helicopter by Applying Indirect Method (간접기법을 이용한 한국형 기동헬기 블레이드 플래핑 각도 예측)

  • Kim, Young-Jin;Lee, Sang-Gi;Lee, Seung-Jae;Chang, In-ki;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.888-895
    • /
    • 2015
  • This paper shows an approximate equation which calculates a flapping angle of blade for verification of KUH safety area. The flapping behavior of blade must be reviewed in an aspect of safety because of a collision possibility with airframe. However, it is difficult to measure an exact flapping angle during flight. A prediction equation of a coning angle is derived from aeromechanics and that of a dynamic flapping angle is derived from analysis results in development phase, respectively. Following, the equations are verified by comparison the flapping angle through an aircraft simulation test to a calculation. Finally, the safety area, which was established in development phase, is verified by calculating a flapping angle during the flight which is required by the terms of safety based on AC29 and FAR29.

Measurement of Rotor Blade Deformation and Motions using Stereo Pattern Recognition Method (SPR 기법을 이용한 회전 블레이드의 변형 및 모션 측정)

  • Park, Jae-Won;Kim, Hong-Il;Han, Jae-Hung;Kim, Do-Hyung;Song, Keun-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.442-450
    • /
    • 2011
  • A measurement system using stereo pattern recognition (SPR) method was configured to measure the rotor blade deformations and motions. An SPR-based measurement system was prepared using six stereo cameras. Through a series of experiments to evaluate the system measurement uncertainty, it was verified that the SPR system had less than 0.2mm standard uncertainty. The combined standard uncertainties for the lead-lag, flapping, and pitching motions were estimated as 0.296mm, 0.209mm, and $0.238^{\circ}$, respectively. The SPR system was installed at a general small-scaled rotor test system at Korea Aerospace Research Institute. The blade motions and elastic deformation were successfully measured under the conditions with rotating speeds of 360rpm or 589rpm, and collective pitch angles of $0^{\circ}$, $4^{\circ}$, or $6^{\circ}$. The advantages of the SPR system was analyzed in comparison with the measurement system used in Higher Harmonic Control Aeroacoustic Rotor Test -II.

An Evaluation on Rupture Behavior of Nozzle Closure in Multi-Nozzle System (멀티노즐시스템의 노즐마개 파열 거동 분석)

  • Ro, Young-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.745-751
    • /
    • 2014
  • For the multi-nozzle propulsion, the rupture pressure of nozzle closure has an effect on the initial strain rate of ignition. Moreover, the deviation of rupture pressure for each nozzle closure leads to side forces which can disturb the attitude control of rocket. When designed, it should be considered whether nozzle closures are ruptured equally and exactly in the intented pressure. In this paper, the rupture behavior is analyzed by analytical and experimental methods for plate and "+" notched nozzle closures. The rupture pressure and deviation for operating temperature, whether notched or not and notched directions are analyzed. This paper provides a comparison between rupture pressure prediction of finite elements method which tool is Abaqus/Explicit and results of the rupture test. Jonson-Cook shear failure model which corresponds to the damage initiation criterion were used in this simulation.

Sea Wave Modeling Analysis and Simulation for Shipboard Landing of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기 함상이착륙 위한 파고운동 해석 및 시뮬레이션)

  • Yoo, Chang-Sun;Cho, Am;Park, Bum-Jin;Kang, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.731-738
    • /
    • 2014
  • The mission of UAV has been expanded from a land to an ocean based on an enhancement of its technologies. Korea Aerospace Research Institute (KARI) also tries to expand the mission of tilt rotor UAV to an ocean, in which the shipboard landing of UAV is required. However the environment of an oceanic operation is severer than that of land due to salty, fogy, and windy condition. The landing point for automatic landing is not fixed due to movement of shipboard in roll, pitch, and heave. It makes the oceanic operation and landing of UAV difficult. In order to conduct an oceanic operation of tilt rotor UAV, this paper presents that the sea wave modeling according to the sea state is conducted and the shipboard landing of tilt rotor UAV under the sea wave is tested and evaluated through the flight simulator for UAV.

Development of Nitrogen Supply System for Launch Complex of KSLV-I (KSLV-I 발사대 질소공급시스템 개발)

  • Cho, Kie-Joo;Ahn, Kyu-Bok;Kim, Mun-Ki;Kang, Sun-Il;Ra, Seung-Ho;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.752-757
    • /
    • 2010
  • For the launch preparation of KSLV-I, gaseous nitrogen with various level of pressure and cryogenic liquid nitrogen are required. Nitrogen Supply System on launch complex has been developed to perform the production of high pressure gaseous nitrogen, the production of gaseous nitrogen with temperature of $273{\pm}2K$ for protection purge of launch vehicle after loading of propellant and the supply of cryogenic liquid nitrogen for cooling of fuel (kerosene) and oxidizer (liquid oxygen). The operational instability of vaporizer mainly caused by its heat transfer characteristics which sensitively depends on the atmospheric conditions was removed by introducing parallel installation of two vaporizer and their switching operation. The developed Nitrogen Supply System carried out its function successfully in preparation of KSLV-I flight tests.

  • PDF

KSR-III 김발엔진 구동장치 서보필터 설계

  • Sun, Byung-Chan;Jung, Ho-Lac
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 2002
  • In this paper, a servo filter design for the gimbal engine actuator system of KSR-III(Korea Sounding Rocket-III) is considered. A reasonable filter structure is determined based on the actuator analytic models. The servo filter consists of a 2-nd order lowpass filter and a 1-st order compensator. The lowpass filter is required to protect the actuator from high frequency vibration, and the compensator to enhance the resulting stability. A Butterworth type servo filter is considered as the simplest one. The final servo filter type is determined by evaluating simultaneously both high frequency gain reduction performance and the corresponding KSR-III stability margin. Consequently it is revealed that a notch type servo filter located on the error between command signal and feedback signal in the control loop is very effective. Later, based on the proposed servo filter type, an onboard servo filter hardware of KSR-III will be designed and tested.

  • PDF

The study of aerodynamic characteristics to design of optimum jetvane (제트베인 최적 설계를 위한 공기역학 특성 연구)

  • 신완순;길경섭;이택상;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.26-33
    • /
    • 2001
  • Thrust vector control system is control device which is mounted exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. By obtaining control force, jetvane which is exposed in jet flow is working thermal and aerodynamic load. Axial thrust loss and side thrust is affected by shock patterns and interactions between jetvanes according to jetvane geometry and turning angle. In this study, we designed 6 types of jetvane to evaluate pitch, yaw and roll characteristics of ietvane in supersonic flow, and perform the cold flow test in range of turning angles of jetvanes between $0^{\cire}$ and $25^{\cire}$ by $5^{\cire}$ respectively. Also, calculation is going side by side to analyse flow interaction. Results show that there is no interactions between jetvanes upto turning angle 20$^{\circ}$, chord and lead length ratio is very important parameter to aerodynamic performance and maximum thrust loss is appeard to 17% of axial thrust in roll directional control.

  • PDF

A Study on Large Scale Digital Mapping Using High Resolution Satellite Stereo Images (고해상도 위성영상을 이용한 대축척 수치지도 제작에 관한 연구)

  • Sung Chun Kyoung;Yun Hong Sic;Cho Jae Myoung;Cho Jung Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.277-284
    • /
    • 2004
  • The subject of this study is to apply experimentally In resolution stereo imagery of IKONOS to producing 1:50,000 scale maps for Munsan area in Paju, being near the Military Demarcation Line, is inaccessible for aerial photography. Ground control points were acquired from GPS surveying to perform geometric corrections on images. Digital maps were produced from IKONOS stereo imagery on the digital photographic workstation. From field investigation, RMS errors of the plane and vertical positions are estimated respectively at $\pm$1.706m and $\pm$1.231m, respectively. These plane and vertical accuracies are within the tolerance limits of those provided in the NGIS Digital Topographic Map Production Rules. Therefore this suggested method is recommended for producing the large scale digital maps of 'No flight' zone near the M.D.L.

Aeroelastic Response Analysis for Wing-Body Configuration Considering Shockwave and Flow Viscous Effects (충격파 및 유동점성 효과를 고려한 항공기 날개-동체 형상에 대한 공탄성 응답)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Hwang, Mi-Hyun;Kim, Su-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.984-991
    • /
    • 2009
  • In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

Longitudinal Control Using Linear Quadratic Tracker with Integrator and Handling Qualities for Unmanned Rotorcraft (LQTI를 이용한 회전익 무인항공기 종방향 조종성 평가를 위한 제어법칙 설계 및 조종성 평가)

  • Lee, Changmin;Kim, Sungkeun;Jo, Seunghwan;Ra, Chunggil;Kim, Ki-joon;Suk, Jinyoung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.393-400
    • /
    • 2017
  • A virtual simulation test program to carry out the handling qualities of unmanned Rotorcraft has developed by using the MATLAB GUIDE(Graphic User Interface Development Environment). The handling quality evaluation program based on ADS-33E contributes to design the flight control system and to evaluate handling qualities. In addition, Linear Quadratic Tracker with Integrator(LQTI) attitude controller based on Linear Quadratic Regulator(LQR) for to rotorcraft BO-105C and the effects of the handling qualities is analyzed change to weight matrices of the Q and R.