• Title/Summary/Keyword: 시험 비행

Search Result 974, Processing Time 0.026 seconds

Development and Assessment of Crashworthy Composite Subfloor for Rotorcrafts (회전익 항공기용 복합재 내추락 하부동체 구조 개발 및 검증)

  • Park, Ill Kyung;Lim, Joo Sup;Kim, Sung Joon;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.18-31
    • /
    • 2018
  • Rotorcrafts have more severe crashworthiness conditions than fixed wing aircraft owing to VTOL and hovering. Recently, with the increasing demand for highly efficient transportation system, application of composite materials to aircraft structures is increasing. However, due to the characteristics of composite materials that are susceptible to impact and crash, demand to prove the crashworthiness of composite structures is also increasing. The purpose of present study is to derive the structural concept of composite subfloor for rotorcrafts and verify it. In order to design a crashworthy composite subfloor, the conceptual design of the testbed helicopter for the demonstration and the derivation of energy absorbing requirement were carried out, and the composite energy absorber was designed and verified. Finally, the testbed for the demonstration of a crashworthy composite structure was fabricated, and performed free drop test. It was confirmed that the test results meet the criteria for ensuring occupant survivability.

An Experimental Study on Blade Deformation of Coaxial Rotor System Using SPR(Stereo Pattern Recognition) Technique (SPR(Stereo Pattern Recognition) 기법을 이용한 동축 로터 블레이드의 변형에 대한 실험적 연구)

  • Yoo, Chanho;Yoon, Byung-Il;Chae, Sanghyun;Kim, Do-Hyung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.597-609
    • /
    • 2020
  • These days, the coaxial rotor system is used for various purposes like UAVs, Mars exploration helicopters, and the next-generation high-speed rotorcraft. A number of research projects on aerodynamic performance of rotor systems, including the coaxial configuration have been made previously. On the contrary, research on rotor blade deformation has been mainly carried out regarding the single rotor system, where such effort has not been enough on the coaxial system. Nonetheless, in case of the coaxial system, blade deformation analysis is much more important because of the complex air flow around the rotors, and that the distance between the two rotors is a key factor affects aerodynamic performance of the entire system. For these reasons, an experimental study on rotor blade deformation of the coaxial system was conducted using the Stereo Pattern Recognition(SPR) technique, one of the state-of-the-art of photogrammetry method. In this research, a small-scale coaxial rotor test stand designed by Korea Aerospace Research Institute(KARI) was used. With the same test stand, performance of the coaxial configuration had been studied before the experimental study on blade deformation, in order to find the relation between performance and blade deformation of the rotor system. Results of the performance test and the deformation study are presented in this article.

A Study on the Legal Issues in Space Tourism (우주여행의 법적문제에 대한 고찰)

  • Kim, Jong-Bok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.26 no.1
    • /
    • pp.215-239
    • /
    • 2011
  • We are now entering the era of Commercial Space Transportation with the rapid commercialization of space. Commercial Space Tourism will be realized first of all in the commercial space transportation and the spacecraft is developing for it led by private enterprise such as Virgin Galatic and XCOR Aerospace. The spacecraft for space tourism is developed as Reusable Launch Vehicle(RLV). RLV Spaceship I & II manufactured by the Scaled Composites for Virgin Galatic had completed experimental flight successfully and is going to put to the operation for space travel around the year 2012. In our country, Yecheon Astro-Space Center located in Yecheon, Kyungbuk Province, signed a binding-MOU with XCOR Aerospace and going to start space travel in the year 2013 with the spacecraft LYNX MARK-II. Thus, now space travel has become a reality to us. But it is also reality that there's no study by legal basis preparing for the space tourism domestically and internationally. In this regards, this thesis dealt with legal issues related to space tourism. These are as follows : (1) the applicabe law issue that is which law between air law and space law will apply, (2) the status of space tourist issue that is space tourist can be considered as personnel of a spacecraft and/or space flight participant and has the duty to obey the order of the captain of spacecraft, (3) the responsibility of the government for the non-governmental entities such as private enterprise which involved in space tourism in case space accident occurs during the space travel, (4) license permit and supervision issue by the government (In this point, for activating the market of the space tourism, I think it is essential to guarantee the safety of the spacecraft by the government authority, though U. S. government declared that it has not certified the launch vehicle as safe for carrying crew or space flight participants), (5) registration issue, (6) space insurance issue. For all the issues mentioned above, I have studied the existing international treaties and several country's domestic law to the space by referring U.S's Commercial Space Launch Amendment Act of 2004 and New IGA of 1998 and concluded that uniform legal regime to govern these issues should be established domestically and internationally in the near future.

  • PDF

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

Validation Study on Conceptual Design and Performance Analysis for Helicopter using NDARC (NDARC을 이용한 헬리콥터 개념설계 및 성능해석 검증 연구)

  • Go, Jeong-In;Park, Jae-Sang;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.877-886
    • /
    • 2016
  • A validation study is conducted for the conceptual design and performance analysis of UH-60A Black Hawk in order to establish the conceptual design and performance analysis techniques for conventional helicopters using a single main rotor and a tail rotor. As a tool for conceptual design and analysis, NDARC(NASA Design and Analysis of Rotorcraft) is used for the present study. The conceptual design for UH-60A is successfully validated as compared with the target values. Then, various performance analyses in hover and forward flight are conducted for the UH-60A model obtained from the present design work, and they are compared well with the wind tunnel test, flight test, and previous analyses using various analysis tools. Through this validation work, the conceptual design and performance analysis techniques for the conventional helicopter are appropriately established.

Study on relationship between the Wirecutter Length and the Control Input of Rotorcraft (회전익 항공기의 전선절단기 길이와 조종입력의 상호관계 연구)

  • Kim, Young-Jin;Lee, Seung-Jae;Chang, In-ki;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.46-53
    • /
    • 2017
  • This paper shows a length of wirecutter using an analysis based on Rotorcraft's control input and taxiing speed. In case of selecting an inappropriate length of wirecutter which applies to rotorcraft for safety, this causes a collision between blade and wirecuter, or an accident by wire. We review the control input which was used in development stage, and establish the conditions of control input which are needed in taxiing. Based on these conditions, we review the collision possibility between blade and wirecutter through analysis in case of 20, 40, 60 kts taxiing speed. Following, this result is verified by comparison with that of a simulation test in rotorcarft. Finally, in case of high collision possibility, we presented the downsize length to avoid the collision and increment of non-protective area in flight, simultaneously.

Preliminary Design of ECR Ion Thruster (ECR 방식 이온추력기 기본 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Choi, Seung-Woon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.14-21
    • /
    • 2010
  • Ion thruster is a kind of electrostatic thruster that use electrostatic field in order to accelerate ionized propellant. Ion thruster have characteristics of small thrust but very high specific impulse among the electric thrusters. High specific impulse can reduce propellant consumption significantly. So, ion thruster have advantage for long time and long distance mission. Recently, plans for space exploration is increasing gradually not only at traditional forward countries for space like USA, Russia and Europe, but also other countries like Japan, China and India. Exploration for superior planets and asteroids the propellant ratio can go up to about 99% when chemical propulsion is used as a cruising thruster. Therefore, latest space exploration vehicles use the ion thruster as main thruster for del-V burn and use monopropellant thrusters for attitude control. In this paper, the development process of preliminary ECR ion thruster and the ECR discharge test results will be presented.

Development of High Resolution SAR(NexSAR) with 30 cm Resolution (분해능 30 cm급의 고해상도 SAR(NexSAR) 개발)

  • Kong, Young-Kyun;Kim, Hyung-Chul;Kim, Seung-Hwan;Kim, Soo-Bum;Yim, Jae-Hag
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.183-192
    • /
    • 2009
  • SAR(Synthetic Aperture Radar) is an all-weather imaging radar and is widely used in military and civil application. Especially high-resolution SAR images are very important in military purpose because it can be used at target recognition application. LIG Nex1 developed a SAR system called NexSAR with bandwidth of 600 MHz and resolution of 30 cm to obtain technologies required for high-resolution SAR. To achieve 600 MHz bandwidth of waveform generator, two DDSs are used and its output signals are SSB modulated. And deramp technique is used to reduce the sampling rate of ADC at high resolution mode. NexSAR has stripmap and spotlight modes and its functionality and performances are evaluated through ground and flight tests.

Flight Dynamic Identification of a Model Helicopter using CIFER®(I) - Flight test for the acquisition of transmitter input data - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (I) - 조종기 제어 입력 데이터 획득을 위한 비행시험 -)

  • Park, Hee-Jin;Koo, Young-Mo;Bae, Yeoung-Hwan;Oh, Min-Suk;Yang, Chul-Oh;Song, Myung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.467-475
    • /
    • 2011
  • Aerial spraying technology using a small unmanned helicopter is an efficient and practical tool to achieve stable agricultural production to improve the working condition. An attitude controller for the agricultural helicopter would be helpful to aerial application operator. In order to construct the flight controller, a state space model of the helicopter should be identified using a dynamic analysis program, such as CIFER$^{(R)}$. To obtain the state space a model of the helicopter, frequency-sweep flight tests were performed and time history data were acquired using a custom-built stick position transmitter. Four elements of stick commands were accessed for the collective pitch (heave), aileron (roll), elevator (pitch), rudder (yaw) maneuvers. The test results showed that rudder stick position signal was highly linear with rudder input channel signal of the receiver; however, collective pitch stick position signal was exponentially manipulated for the convenience of control stick handling. The acquired stick position and flight dynamic data during sweep tests would be analyzed in the followed study.

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.