• Title/Summary/Keyword: 시편 형상

Search Result 389, Processing Time 0.024 seconds

Effects of Specimen Size and Testing Velocity on Puncture Properties of Short-fiber Reinforced Chloroprene Rubber (시편 크기 및 시험속도가 단섬유 강화 클로로프렌 고무의 관통 특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.28-33
    • /
    • 2007
  • The puncture properties of short-fiber reinforced rubber were investigated as functions of fiber aspect ratio(AR: length of fiber/diameter of fiber), fiber content, specimen size and testing velocity. The puncture stresses of the matrix and short-fiber reinforced rubber decreased with specimen size, and increased with testing velocity at same specimen size. As the fiber AR increased the puncture stress at given fiber content also increased. The problem of the specimen shape was investigated by the comparison of the tensile strength with puncture stress. The forces acting in the membrane wall of the matrix and the short-fiber reinforced rubber showed a similar data regardless of specimen size. And those increased with testing velocity at same specimen size. As the fiber AR increased the force acting in the wall at given fiber content also increased. Overall, it was found that the specimen size, testing velocity had an important effects on the puncture properties.

Effect of Particle Size of Tungsten Powder on the Properties of Vacuum Plasma Sprayed Tungsten coatings

  • Kim, Ho-Seok;Mun, Se-Yeon;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.205.1-205.1
    • /
    • 2016
  • 핵융합로에서 고온, 고에너지 플라즈마에 장기간 노출되는 플라즈마 대면재는 고속 입자와 중성자에 의한 열화 및 침식과 높은 열부하를 견뎌야 하므로 높은 수준의 재료기술과 표면 코팅기술의 개발이 필요하다. 텅스텐은 용융점이 높고, 스퍼터링(Sputtering) 현상이 적으며, Tritium 재침적 현상이 제한되는 우수한 특성 때문에 핵융합로 대면제에 적용하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 VPS(vacuum plasma spray) 장비를 이용하여 5, 10, $25{\mu}m$ 크기의 텅스텐 분말을FM(ferritic-martenitic) steel 기판에 용사 코팅하였다. 입자 크기를 달리하여 제작한 3종의 시편은 시편 전후 두께 및 무게 변화, 현미경이미지, 비커스 경도, 3D 표면 형상, XRD를 이용하여 코팅층의 특성을 평가하였으며, $10{\mu}m$ 크기의 텅스텐 분말 시편이 가장 우수한 특성을 나타내는 것을 확인하였다.

  • PDF

$CO_2$ laser beam으로 표면용융한 예민화된 Alloy 600의 IGS 특성

  • 서정훈;임연수;변재현;김도훈;국일현;김정수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.105-110
    • /
    • 1996
  • $CO_2$ laser beam을 이용하여 예민화 Alloy 600 재료의 표면을 용융하여 상온의 $Na_2$S$_4$O$_{6}$ 용액에서 일정변형률 시험을 하였으며, TEM으로 용융된 부위의 미세조직을 관찰하였다. Laser beam으로 표면용융시킨 예민화 Alloy 600에서는 표면용융하지 않은 시편의 IGSCC 파괴와는 달리 연성파괴가 일어났으며, 이 시편의 파단면은 as-received 시편의 연상파괴에 의한 파단면과 유사하게 dimple 형상을 보여주었다. 한편, laser로 표면용융된 부위의 응고조직은 cellular 조직을 나타내고 있었으며, cell boundary는 높은 밀도의 dislocation이 엉켜있었다. EDX로 cell과 cell 사이, 그리고 결정립과 결정립 사이의 경계를 가로질러 성분분석을 한 결과 두경계면에서 Cr이 matrix에서보다 높게 측정되었다. Laser로 표면용융한 예민화 Alloy 600에서의 IGSCC 저항성 증가는 이러한 경계면에서의 Cr 증가 때문인 것으로 유추된다.

  • PDF

Effects of Riser Design and Chemical Composition on the Formation of Shrinkage Cavity in Gray and Ductile Iron Castings

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.101-107
    • /
    • 2004
  • 회주철 및 구상흑연주철에 있어서 압탕방안 및 합금원소가 수축결함의 생성에 미치는 영향을 연구하였다. 두 종류의 압탕방안으로 실린더형상의 계단상시편을 제조하였으며 회주철의 경우 5조성(ISO 150, 200, 250, 300, 350), 구상흑연주철의 경우 6조성(SG 10, 20, 30, 40, 50, 60)을 사용하였다. 회주철 및 구상흑연주칠 공히, 1차 압탕방안의 경우 액상수축에 의한 1차수축결함이 후육부의 표면에 발생하였으며 수축결함의 내면은 매끄러웠다. 회주철의 경우 응고수축에 의한 2차수축결함은 생성되지 않았으나 구상흑연주철의 경우 모든 시편의 내부열점에 2차수축결함이 발생하였고 그 내면은 거칠었다. 2차압탕방안의 경우 회주철의 모든 시편에서는 1차 및 2차수축결함이 발생되지 않았다. 그러나 구상흑연주철의 경우 탄화물 생성원소가 첨가된 SG 40, 50 및 60의 3조성에서 2차수축결함이 열점에 생성되었다. 견고한 ���V주형을 사용하였기 때문에 주형벽이동으로 인한 표면팽창은 어느 경우에도 관찰되지 않았다.

Microstructure of Yttria-doped Ceria-Stabilized Zirconia Polycrystals (Yttria를 도핑한 세리아 안정화 지르코니아 세라믹스의 미세구조)

  • Lee, J.K.;Kang, H.H.;Seo, D.S.;Lee, E.G.;Kim, H.
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.768-774
    • /
    • 1999
  • Yttia-doped ceria-stabilized ziconia polycrystals(Ce-TZP) was prepared by dipping method and its microstructure was investigated. By controlling doped-yttria content and annealing condition, yttria-doped Ce-TZP showed the microstructure with irregular grain shape and undulated grain boundary. Irregularity of grain shape increased with the amount of yttria doped, and severe undulated grain boundary was observed mainly at the surface region. In the case of yttria-doped Ce-TZP annealed at 1$650^{\circ}C$ for 2h after two dipping times into yttrium nitrate solution of 0.2M, it showed irregular grain shape both at the surface and at the interior region as well as the most severe irregularity. Hot pressed specimen had mean grain size of 0.3$\mu\textrm{m}$ and undulated grain boundary. All specimens with irregular grain shape were retained the tetragonal phase. The fracture toughness of yttria-doped Ce-TZP with irregular grain shape was over the value of 17.6MPa.m(sup)1/2.

  • PDF

Prediction Method for Moisture-release Surface Deformation of a Large Mirror in the Space Environment (우주환경에서 대형 반사경의 습기 방출에 의한 형상 변화 예측방법)

  • Song, In-Ung;Yang, Ho-Soon;Khim, Hagyong;Kim, Seong-Hui;Lee, Hoi-Yoon;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.166-172
    • /
    • 2018
  • In this paper, we propose a new method to predict a mirror's surface deformation due to the stress of moisture release by a coating in the environment of outer space. We measured the surface deformation of circular samples 50 mm in diameter and 1.03 mm thick, using an interferometer. The results were analyzed using Zernike fringe polynomials. The coating stress caused by moisture release was calculated to be 152.7 MPa. This value was applied to an analytic model of a 1.25 mm thickness sample mirror, confirming that the change of surface deformation could be predicted within the standard deviation of the measurement result ($78.9{\pm}5.9nm$). Using this methodology, we predicted the surface deformation of 600 mm hyperbolic mirror for the Compact Advanced Satellite, which will be launched in 2019. The result is only $2.005{\mu}m$ of focal shift, leading to 2.3% degradation of modulation transfer function (MTF) at the Nyquist frequency, which satisfies the requirement.

A Study on the Warpage in Injection Molded Part for Various Part Designs and Non Reinforced Resins (비 보강 수지의 종류와 사출성형품의 설계에 따른 휨의 연구)

  • Lee, M.;Kim, J.H.;Park, S.R.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.373-377
    • /
    • 2009
  • Most of the plastics products are being manufactured by injection molding. Warpage in injection molded affects the product dimension and it causes assembling problem. In this study, warpages in the injection molded part been studied. Specimens are rectangular flat shapes with and without ribs. Amorphous polymers (PC and ABS) and crystalline polymers (PP and PA66) were used for material. Flat shape with ribs showed higher warpage than flat shape without ribs by 6 to 9%. The specimens with ribs that are located parallel to the flow direction has higher warpage than specimens with ribs that are located perpendicular to the flow direction by 25 to 39%. Crystalline polymers have higher warpage than amorphous polymers by 23 to 67%. Warpage decreases as packing time increases and it increases as injection temperature increases.

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Analysis of the microstructure of melting-pool in aluminum specimens fabricated by SLM technique (SLM 기법으로 제작한 알루미늄 시편 내부 멜팅풀 미세조직 분석)

  • Kim, Moo-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.115-119
    • /
    • 2020
  • Selective Laser Melting (SLM) technology is state-of-the-art additive manufacturing process technology that produces a three-dimensional structure by irradiating a laser on a fine metal powder to perform the fusion of a specific area and repeat this process. Owing to the characteristics of the additive manufacturing process, the melting phenomenon of the metal material by the laser has directionality depending on the process conditions, such as the irradiation direction of the laser and the build-up direction. For this reason, the composition of the metal material in the structure exhibits non-uniform characteristics. In this study, aluminum (AlSi10Mg) specimens were manufactured by applying SLM technology, and the material composition characteristics of the specimen were analyzed. The specimens were manufactured as cylinders by the build-up orientation of 0°, 45°, and 90°. The surface morphology of the specimen plane was analyzed optically. TEM analysis was performed on the core and the interface of the melting-pool inside the specimen generated by laser irradiation. The analysis results confirmed that there was a difference between the nano cell structure of the core and the interface of the melting-pool, and that the composition ratio of Si appeared higher at the interface than at the core of the cell.

A Study on the Variations of Impact Strength of Plastics for Various Thicknesses and Notch Formation (두께와 노치생성방법에 따른 플라스틱 수지의 충격강도 변화에 관한 연구)

  • Kim, Hyun;Lee, Dae-Seop;Lim, Jae-Soo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • The impact strength of material is considered the most important design factor for small and light products. Impact strength is a unique material property, thus the impact strength should not depend upon the geometry of specimen. However it varies according to specimen thickness, notching method, and notch shape. In this study, the variations of impact strength have been investigated according to thickness, notch shape, and notching method of specimen. Engineering plastics such as PC, ABS and POM have been used in this study. Experimental results showed impact strength increased as thickness decreasesd. PC showed the highest increment of impact strength when the thickness was thin. Fractured section of PC showed brittle fracture behavior when the specimen was thick. However it showed ductile fracture behavior when it was thin. The impact strength of in-mold notched specimen showed higher than that of milling notched specimen. PC showed the highest notch sensitivity among the materials used in this experiment.