• Title/Summary/Keyword: 시퀀싱

Search Result 127, Processing Time 0.033 seconds

Exploring the role and characterization of Burkholderia cepacia CD2: a promising eco-friendly microbial fertilizer isolated from long-term chemical fertilizer-free soil

  • HyunWoo Son;Justina Klingaite;Sihyun Park;Jae-Ho Shin
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.394-403
    • /
    • 2023
  • In the pursuit of sustainable and environmentally-friendly agricultural practices, we conducted an extensive study on the rhizosphere bacteria inhabiting soils that have been devoid of chemical fertilizers for an extended period exceeding 40 years. Through this investigation, we isolated a total of 80 species of plant growth-promoting rhizosphere bacteria and assessed their potential to enhance plant growth. Among these isolates, Burkholderia cepacia CD2 displayed remarkable plant growth-promoting activity, making it an optimal candidate for further analysis. Burkholderia cepacia CD2 exhibited a range of beneficial characteristics conducive to plant growth, including phosphate solubilization, siderophore production, denitrification, nitrate utilization, and urease activity. These attributes are well-known to positively influence the growth and development of plants. To validate the taxonomic classification of the strain, 16S rRNA gene sequencing confirmed its placement within the Burkholderia genus, providing further insights into its phylogenetic relationship. To delve deeper into the potential mechanisms underlying its plant growth-promoting properties, we sought to confirm the presence of specific genes associated with plant growth promotion in CD2. To achieve this, whole genome sequencing (WGS) was performed by Plasmidsaurus Inc. (USA) utilizing Oxford Nanopore technology (Abingdon, UK). The WGS analysis of the genome of CD2 revealed the existence of a subsystem function, which is thought to be a pivotal factor contributing to improved plant growth. Based on these findings, it can be concluded that Burkholderia cepacia CD2 has the potential to serve as a microbial fertilizer, offering a sustainable alternative to chemical fertilizers.

Anti-inflammatory Activity of Antimicrobial Peptide Zophobacin 1 Derived from the Zophobas atratus (아메리카왕거저리 유래 항균 펩타이드 조포바신 1의 항염증활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae) has been used as a protein source for small pets and mammals. Recently, it was temporarily registered in the list of the Food Code. We previously performed an in silico analysis of the Zophobas atratus transcriptome to identify putative antimicrobial peptides and identified several antimicrobial peptide candidates. Among them, we assessed the antimicrobial and anti-inflammatory activities of zophobacin 1 that was selected bio-informatically based on its physicochemical properties against microorganisms and mouse macrophage Raw264.7 cells. Zophobacin 1 showed antimicrobial activities against microorganisms without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that zophobacin 1 reduced expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We also investigated expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) production through quantitative real time-PCR and ELISA. Zophobacin 1 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling. We confirmed that zophobacin 1 bound to bacterial cell membranes via a specific interaction with lipopolysaccharides. These data suggest that zophobacin 1 could be promising molecules for development as antimicrobial and anti-inflammatory therapeutic agents.

Transcriptomic Profile Analysis of Jeju Buckwheat using RNA-Seq Data (NA-Seq를 이용한 제주산 메밀의 발아초기 전사체 프로파일 분석)

  • Han, Song-I;Chung, Sung Jin;Oh, Dae-Ju;Jung, Yong-Hwan;Kim, Chan-Shick;Kim, Jae-hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.537-545
    • /
    • 2018
  • In this study, transcriptome analysis was conducted to collect various information from Fagopyrum esculentum and Fagopyrum tataricum during the early germination stage. Total RNA was extracted from the seeds and at 12, 24, and 36 hrs after germination of Jeju native Fagopyrum esculentum and Fagopyrum tataricum and sequenced using the Illumina Hiseq 2000 platform. Raw data analysis was conducted using the Dynamic Trim and Lengths ORT programs in the SolexaQA package, and assembly and annotation were performed. Based on RNA-seq raw data, we obtained 16.5 Gb and 16.2 Gb of transcriptome data corresponding to about 84.2% and 81.5% of raw data, respectively. De novo assembly and annotation revealed 43,494 representative transcripts corresponding to 47.5Mb. Among them, 23,165 sequences were shown to have similar sequences with annotation DB. Moreover, Gene Ontology (GO) analysis of buckwheat representative transcripts confirmed that the gene is involved in metabolic processes (49.49%) of biological processes, as well as cell function (46.12%) in metabolic process, and catalytic activity (80.43%) in molecular function In the case of gibberellin receptor GID1C, which is related to germination of seeds, the expression levels increased with time after germination in both F. esculentum and F. tataricum. The expression levels of gibberellin 20-oxidase 1 were increased within 12 hrs of gemination in F. esculentum but continuously until 36 hrs in F. tataricum. This buckwheat transcriptome profile analysis of the early germination stage will help to identify the mechanism causing functional and morphological differences between species.

Anti-inflammatory Activity of Antimicrobial Peptide Papiliocin 3 Derived from the Swallowtail Butterfly, Papilio xuthus (호랑나비 유래 항균 펩타이드 파필리오신 3의 항염증 활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.886-895
    • /
    • 2020
  • The development of novel peptide antibiotics with potent antimicrobial activity and anti-inflammatory activity is urgently needed. In a previous work, we performed an in-silico analysis of the Papilio xuthus transcriptome to identify putative antimicrobial peptides and identified several candidates. In this study, we investigated the antibacterial and anti-inflammatory activities of papiliocin 3, which was selected bioinformatically based on its physicochemical properties against bacteria and mouse macrophage Raw264.7 cells. Papiliocin 3 showed antibacterial activities against E. coli and S. aureus without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that papiliocin 3 reduced the expression levels of pro-inflammatory enzymes, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). In addition, we examined whether papiliocin 3 could inhibit the expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) in LPS-induced Raw264.7 cells. We found that papiliocin 3 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling. We also confirmed that papiliocin 3 binds to bacterial cell membranes via a specific interaction with lipopolysaccharides. Collectively, these findings suggest that papiliocin 3 could be a promising molecule for development as a novel peptide antibiotic.

Development of a Genetic Map of Chili Pepper Using Single Nucleotide Polymorphism Markers Generated from Next Generation Resequencing of Parents (양친의 대량 염기서열 해독을 통해 개발된 SNP 분자표지를 이용한 고추 유전자지도 작성)

  • Lee, Jundae;Park, Seok Jin;Do, Jae Wahng;Han, Jung-Heon;Choi, Doil;Yoon, Jae Bok
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.473-482
    • /
    • 2013
  • Molecular markers, as an efficient selection tool, have been and is being used for practical breeding program in chili pepper (Capsicum annuum L.). Recently, a lot of researches on inheritance and genetic analysis for quantitative traits including capsaicinoids, carotenoids, and sugar content in pepper are being performed worldwide. It has been also reported that QTL mapping is a necessary tool to develop molecular markers associated with the quantitative traits. In this study, we suggested a new method to construct a pepper genetic map using SNP (HRM) markers generated from NGS resequencing of female and male parents. Plant materials were C. annuum 'NB1' (female parent), C. chinense 'Jolokia' (male parent), and their $F_2$ population consisting of 94 progenies. Sequences of 4.6 Gbp and 6.2 Gbp were obtained from NGS resequencing of 'NB1' and 'Jolokia', respectively. Totally, 4.29 million SNPs between 'NB1' and 'Jolokia' were detected and the 1.76 million SNPs were clearly identified. Among them, total 145 SNP (HRM) primer pairs covering pepper genetic map were selected, and the 116 SNP (HRM) markers of them were located on this map. Total distance of the map, which consisted of 12 linkage groups and matched with basic chromosome numbers of pepper, was 1,167.9 cM. According to the mapping result, we concluded that our mapping method was suitable to construct a pepper genetic map fast and accurately. In addition, the genetic map could be directly used for QTL analysis of traits different between both parents.

A Case of Late-onset Episodic Myopathic Form with Intermittent Rhabdomyolysis of Very-long-chain acyl-coenzyme A Dehydrogenase (VLCAD) Deficiency Diagnosed by Multigene Panel Sequencing (유전자패널 시퀀싱으로 진단된 성인형 very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) 결핍증 증례)

  • Sohn, Young Bae;Ahn, Sunhyun;Jang, Ja-Hyun;Lee, Sae-Mi
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.19 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (OMIM#201475) is an autosomal recessively inherited metabolic disorder of mitochondrial long-chain fatty acid oxidation. The clinical features of VLCAD deficiency is classified by three clinical forms according to the severity. Here, we report a case of later-onset episodic myopathic form of VLCAD deficiency whose diagnosis was confirmed by plasma acylcarnitine analysis and" multigene panel multigene panel sequencing. A 34-year old female patient visited genetics clinic for genetic evaluation for history of recurrent myopathy with intermittent rhabdomyolysis. She suffered first episode of rhabdomyolysis with acute renal failure requiring hemodialysis at twelve years old. After then, she suffered several times of recurrent rhabdomyolysis provoked by prolonged exercise or fasting. Physical and neurologic exam was normal. Serum AST/ALT and creatinine kinase (CK) levels were mildly elevated. However, according to her previous medical records, her AST/ALT, CK were highly elevated when she had rhabdomyolysis. In suspicion of fatty acid oxidation disorder, multigene panel sequencing and plasma acylcarnitine analysis were performed in non-fasting, asymptomatic condition for the differential diagnosis. Plasma acylcarnitine analysis revealed elevated levels of C14:1 ($1.453{\mu}mol/L$; reference, 0.044-0.285), and C14:2 ($0.323{\mu}mol/L$; 0.032-0.301) and upper normal level of C14 ($0.841{\mu}mol/L$; 0.065 -0.920). Two heterozygous mutation in ACADVL were detected by multigene panel sequencing and confirmed by Sanger sequencing: c.[1202G>A(;) 1349G>A] (p.[(Ser 401Asn)(;)(Arg450His)]). Diagnosis of VLCAD deficiency was confirmed and frequent meal with low-fat diet was educated for preventing acute metabolic derangement. Fatty acid oxidation disorders have diagnostic challenges due to their intermittent clinical and laboratorial presentations, especially in milder late-onset forms. We suggest that multigene panel sequencing could be a useful diagnostic tool for the genetically and clinically heterogeneous fatty acid oxidation disorders.

  • PDF

Association Study of Zygote Arrest 1 on Semen Kinematic Characteristics in Duroc Boars (두록 정자 운동학적 특성과 Zygote arrest 1 유전자 변이와의 연관성 분석)

  • Lee, Mi Jin;Ko, Jun Ho;Kim, Yong Min;Choi, Tae Jeong;Cho, Kyu Ho;Kim, Young Sin;Jin, Dong Il;Kim, Nam Hyung;Cho, Eun Seok
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.29 no.4
    • /
    • pp.150-157
    • /
    • 2018
  • The Zygote arrest 1 (ZAR1) gene is known to affect early embryonic development in various vertebrates. In this study, we performed the association analysis to check whether there is any significant relationship between semen kinematic characteristics and the ZAR1 gene. To determine semen kinematic characteristics, we measured motility (MOT), straight-line velocity (VSL), curvilinear velocity (VCL), average path velocity (VAP), linearity (LIN), straightness (STR), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF) of spermatozoa in boars. In order to detect single nucleotide polymorphisms (SNPs), we extracted genomic DNA from multiple Duroc boars, and then subsequently used them in sequencing reactions. As a result, three SNPs were detected in the intronic region of ZAR1 gene (g.2435T>C in intron 2, g.2605G>A and g.4633A>C in intron 3 ). SNPs g.2435T>C and g.2605G>A were significantly associated with MOT (p<0.01) and VSL (p<0.05), and g.4633A