• Title/Summary/Keyword: 시퀀스 빈발도

Search Result 20, Processing Time 0.029 seconds

Mining Frequent Closed Sequences using a Bitmap Representation (비트맵을 사용한 닫힌 빈발 시퀀스 마이닝)

  • Kim Hyung-Geun;Whang Whan-Kyu
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.807-816
    • /
    • 2005
  • Sequential pattern mining finds all of the frequent sequences satisfying a minimum support threshold in a large database. However, when mining long frequent sequences, or when using very low support thresholds, the performance of currently reported algorithms often degrades dramatically. In this paper, we propose a novel sequential pattern algorithm using only closed frequent sequences which are small subset of very large frequent sequences. Our algorithm generates the candidate sequences by depth-first search strategy in order to effectively prune. using bitmap representation of underlying databases, we can effectively calculate supports in terms of bit operations and prune sequences in much less time. Performance study shows that our algorithm outperforms the previous algorithms.

Development of Frequent Sequence Extractor Based on Hadoop (하둡 기반 빈발 시퀀스 추출기 개발)

  • Park, Joon-Ha;Lee, Byung-Hee;Park, Sang-Jae;Lee, Jeong-Joon
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1199-1202
    • /
    • 2013
  • 최근 증권, 센서, 기후, 의료 분야 등에서 수많은 시계열 데이터들이 쏟아져 나오고 있고, 이러한 시계열 빅 데이터를 통해 의미를 찾아내고자 하는 시계열 해석 및 분석, 예측 작업의 수요가 증가하고 있다. 시계열 해석 및 분석, 예측 작업을 하기 위해서 사용 될 수 있는 기초 작업은 유사한 시계열 시퀀스를 찾아내는 유사 시퀀스 매칭과 이러한 매칭을 통해 특정 시계열 데이터의 하나의 특징이 되는 빈발 시퀀스 추출 기술이 필요하다. 본 논문에서는 이러한 시계열 빅 데이터에서 유사 시퀀스 매칭을 이용한 빈발 시퀀스 추출 문제를 효율적으로 해결하는 빈발 시퀀스 추출기(Frequent Sequence Extractor)를 개발 및 구현하였다. 또한 분산처리 플랫폼인 하둡을 이용한 데이터 파싱을 사용하여, 각 분야별 시계열 데이터를 분석하는 전문가에게 효율적인 분산처리 효과를 제공한다.

Extraction of Optimal Moving Pattern using Maximum Frequent 2-Sequence (최대 빈발 2-시퀀스를 이용한 최적 이동 패턴 추출)

  • Lee, Yon-Sik;Ko, Hyun;Kim, Kwang-Jong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.367-372
    • /
    • 2008
  • 최근 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 이동 객체의 다양한 패턴들 중 의미있는 지식인 유용한 이동 패턴을 탐사하는 문제가 주요 이슈로 부각되고 있다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터 집합으로부터 특정 지점들 간의 최적 이동 경로나 정해진 시간내의 스케줄링 경로 탐색과 같이 복합적인 시간 및 공간 제약을 갖는 최적 이동 패턴을 탐사하는 문제에 대해 정의하고, 다양한 이동 패턴들 중 가장 빈발하게 발생하는 패턴이 최적의 비용을 소요할 것이라는 가정을 기반으로 최대 빈발 2-시퀀스를 추출하는 방법을 제안한다. 후보 시퀀스 집합으로부터 지지도 계산을 통해 추출되는 빈발 2-시퀀스들의 순차적인 조합은 패턴 탐사를 수행하는 각 패스 진행 시 후보 시퀀스 항목의 차수가 점차 감소하여 최적 이동 패턴 탐사 방법에 효과적으로 적용된다.

  • PDF

시퀀스 패턴 마이닝 기법을 적용한 침입탐지 시스템의 경보데이터 패턴분석

  • Shin, Moon-Sun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.451-454
    • /
    • 2010
  • 침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입의 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 대용량의 데이터를 분석하여 의미 있는 정보를 추출하는 데이터 마이닝 기법을 적용하여 지능적이고 자동화된 탐지 및 경보데이터 패턴 분석에 이용할 수 있다. 본 논문에서는 경보데이터 패턴 분석을 위해 시퀀스패턴기법을 적용한 경보데이터 마이닝 엔진을 구축한다. 구현된 경보데이터 마이닝 시스템은 기존의 시퀀스 패턴 알고리즘인 PrefixSpan 알고리즘을 확장 구현하여 경보데이터의 빈발 경보시퀀스 분석과 빈발 공격시퀀스 분석에 활용할 수 있다.

  • PDF

Spatial-Temporal Moving Sequence Pattern Mining (시공간 이동 시퀀스 패턴 마이닝 기법)

  • Han, Seon-Young;Yong, Hwan-Seung
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.599-617
    • /
    • 2006
  • Recently many LBS(Location Based Service) systems are issued in mobile computing systems. Spatial-Temporal Moving Sequence Pattern Mining is a new mining method that mines user moving patterns from user moving path histories in a sensor network environment. The frequent pattern mining is related to the items which customers buy. But on the other hand, our mining method concerns users' moving sequence paths. In this paper, we consider the sequence of moving paths so we handle the repetition of moving paths. Also, we consider the duration that user spends on the location. We proposed new Apriori_msp based on the Apriori algorithm and evaluated its performance results.

Optimal Moving Pattern Mining using Frequency of Sequence and Weights (시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사)

  • Lee, Yon-Sik;Park, Sung-Sook
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.79-93
    • /
    • 2009
  • For developing the location based service which is individualized and specialized according to the characteristic of the users, the spatio-temporal pattern mining for extracting the meaningful and useful patterns among the various patterns of the mobile object on the spatio-temporal area is needed. Thus, in this paper, as the practical application toward the development of the location based service in which it is able to apply to the real life through the pattern mining from the huge historical data of mobile object, we are proposed STOMP(using Frequency of sequence and Weight) that is the new mining method for extracting the patterns with spatial and temporal constraint based on the problems of mining the optimal moving pattern which are defined in STOMP(F)[25]. Proposed method is the pattern mining method compositively using weighted value(weights) (a distance, the time, a cost, and etc) for our previous research(STOMP(F)[25]) that it uses only the pattern frequent occurrence. As to, it is the method determining the moving pattern in which the pattern frequent occurrence is above special threshold and the weight is most a little bit required among moving patterns of the object as the optimal path. And also, it can search the optimal path more accurate and faster than existing methods($A^*$, Dijkstra algorithm) or with only using pattern frequent occurrence due to less accesses to nodes by using the heuristic moving history.

  • PDF

Efficient Mining of Dynamic Weighted Sequential Patterns (동적 가중치를 이용한 효율적인 순차 패턴 탐사 기법)

  • Choi, Pilsun;Kang, Donghyun;Kim, Hwan;Kim, Daein;Hwang, Buhyun
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1365-1368
    • /
    • 2012
  • 순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 찾아내는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용하는 마이닝 기법으로 동적인 중요도 변화를 마이닝에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터에서 동적 가중치를 적용하여 순차 패턴을 탐사하는 새로운 시퀀스 데이터 마이닝 기법에 대하여 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여줄 수 있어 빈발한 시퀀스 패턴을 빠르게 찾을 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다.

Web Log Mining for Adaptive Web Sites (적응형 웹 사이트를 위한 웹 로그 마이닝)

  • Ko, Kyong-Ja;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2001.04a
    • /
    • pp.325-328
    • /
    • 2001
  • 본 논문에서는 웹 사이트에 접근하는 이용자의 패턴을 분석하여 정보 제공이 보다 용이한 구조로 자동 개선시켜 나가는 적응형 웹 사이트의 구현 방안을 제시한다. 특히, 본 연구에서는 기존 웹 사이트의 구조를 가능한 파괴하지 않는 범위 내에서 웹 사이트론 변경하고자 이용자의 접근 패턴상 연관성은 높으나 접근 경로가 긴 문서들을 추출하여 색인 페이지를 추가 생성한다. 이를 위하여, 먼저 대용량의 웹 서버 로그 데이터를 대상으로 하이퍼 링크 구조에 따라 필터링된 최후 전진 문서만을 가지고 데이터 시퀀스를 구성한다. 이러한 데이터 시퀀스에 새로운 순차 접근 패턴 탐색 알고리즘인 TPA를 적용함으로써 웹 문서간 충분한 지지도를 갖는 연관성 있는 문서들의 시퀀스를 구한다. 이와같은 빈발 시퀀스들에 대한 색인 페이지를 추가로 생성시켜주는 서비스를 통하여 이용자들의 효과적인 정보 접근을 지원할 수 있는 웹 사이트로의 변경이 가능하다.

  • PDF

A Method for Predicting Event Occurrence based on the Relations of Frequent Interval Events (빈발 인터벌 이벤트 관계에 기반한 이벤트 발생 예측 방법)

  • Song, Myung-Jin;Kim, Dae-In;Hwang, Bu-Hyun
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.298-301
    • /
    • 2009
  • 시간 속성을 갖는 이벤트들의 집합에서 이벤트들 사이의 인과관계를 보다 정확히 파악할 수 있는 방법의 개발은 의료 분야 등의 응용에서 미리 발생할 이벤트에 발생 시점 예측을 위하여 필요하다. 본 논문은 이벤트들의 시퀀스를 독립적인 서브 시퀀스로 나누고 각 서브 시퀀스를 인터벌을 갖는 이벤트로 요약하여 인터벌 이벤트들 사이의 관계를 표현한다. 그리고 인터벌 이벤트 관계에서 원인 인터벌 이벤트가 결과 이벤트에 미친 영향 정도의 측정 방법을 개발하고 실험을 통하여 사용한 척도의 의미와 정확성을 파악한다. 실험 결과는 제안 방법이 지지도 기반의 평가보다 보다 우수함을 입증한다.

A Comparison of Performance between STMP/MST and Existing Spatio-Temporal Moving Pattern Mining Methods (STMP/MST와 기존의 시공간 이동 패턴 탐사 기법들과의 성능 비교)

  • Lee, Yon-Sik;Kim, Eun-A
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.49-63
    • /
    • 2009
  • The performance of spatio-temporal moving pattern mining depends on how to analyze and process the huge set of spatio-temporal data due to the nature of it. The several method was presented in order to solve the problems in which existing spatio-temporal moving pattern mining methods[1-10] have, such as increasing execution time and required memory size during the pattern mining, but they did not solve properly yet. Thus, we proposed the STMP/MST method[11] as a preceding research in order to extract effectively sequential and/or periodical frequent occurrence moving patterns from the huge set of spatio-temporal moving data. The proposed method reduces patterns mining execution time, using the moving sequence tree based on hash tree. And also, to minimize the required memory space, it generalizes detailed historical data including spatio-temporal attributes into the real world scopes of space and time by using spatio-temporal concept hierarchy. In this paper, in order to verify the effectiveness of the STMP/MST method, we compared and analyzed performance with existing spatio-temporal moving pattern mining methods based on the quantity of mining data and minimum support factor.

  • PDF