The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.5C
/
pp.371-377
/
2008
In this paper, we present a framework for vision-based two-arm gesture recognition. To capture the motion information of the hands, we perform color-based tracking algorithm using adaptive kernel for each frame. And a feature selection algorithm is performed to classify the motion information into four different phrases. By using gesture phrase information, we build a gesture model which consists of a probability of the symbols and a symbol sequence which is learned from the longest common subsequence. Finally, we present a similarity measurement for two-arm gesture recognition by using the proposed gesture models. In the experimental results, we show the efficiency of the proposed feature selection method, and the simplicity and the robustness of the recognition algorithm.
Computing the rotation-invariant distance between image time-series is a time-consuming process that incurs a lot of Euclidean distances for all possible rotations. In this paper we propose an innovative solution that significantly reduces the number of Euclidean distances using the triangular inequality. To this end, we first present the notion of self rotation distance and show that, by using the self rotation distance with the triangular inequality, we can prune many unnecessary distance computations. We next present that only one self-rotation is enough for all self-rotation distances required. Experimental results show that our self rotation distance-based methods outperform the existing methods by up to an order of magnitude.
Kim, Sora;Park, TaeWon;Hwang, HyeRyeon;Cho, Hwan-Gue
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.1326-1329
/
2012
전사체(transcript)는 유전자로부터 전사된 DNA 시퀀스 코드를 말한다. 전사체(transcript)의 발현된 형태에 따라 생성되는 단백질의 형태 역시 달라지므로 전사체 모델의 형태는 중요한 의미를 가지며 특정 위치의 전사체가 정상과 다르게 모델이 변할 경우 심각한 경우에는 유전자 질병에 노출될 수 있다. 현재 실험체에 대한 전사체 모형은 SpliceGrapher, Cufflinks와 같은 상용화된 도구들을 사용하여 얻을 수 있다. 하지만 이런 도구 간의 결과 값 및 어노테이션 정보와 결과 값 간의 유사도 비교를 위한 방법론은 현재 알려진 바 없다. 대신 전사체 비교를 위해 모형 간의 차이를 눈으로 하나씩 비교하거나 전사체 위치를 이용한 산수 값을 이용한다. 본 논문에서는 전사체 모형 간의 유사도를 비교하기 위한 방법론을 제시하고 Homo sapiens grch37 어노테이션 파일과 SRR387514 실험 데이터 간의 유사도를 제시한 방법론을 이용하여 측정한 결과 값을 분석하였다.
Recently, in the field of computer animation, a method for generating motion using deep learning has been studied away from conventional finite-state machines or graph-based methods. The expressiveness of the network required for learning motions is more influenced by the diversity of motion contained in it than by the simple length of motion to be learned. This study aims to find an efficient network structure when the types of motions to be learned are diverse. In this paper, we train and compare three types of networks: basic fully-connected structure, mixture of experts structure that uses multiple fully-connected layers in parallel, recurrent neural network which is widely used to deal with seq2seq, and transformer structure used for sequence-type data processing in the natural language processing field.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.226-226
/
2023
하천유량, 댐유입량 등을 예측하기 위해 다양한 Long Short-Term Memory (LSTM) 방법들이 활발하게 적용 및 개발되고 있다. 최근 연구들은 s2s (sequence-to-sequence), Attention 기법 등을 통해 LSTM의 성능을 개선할 수 있음을 제시하고 있다. 이에 따라 본 연구에서는 LSTM-s2s와 LSTM-s2s에 attention까지 첨가한 모델을 구축하고, 시간 단위 자료를 사용하여 유입량 예측을 수행하여, 이의 실제 댐 운영에 모델들의 활용 가능성을 확인하고자 하였다. 소양강댐 유역을 대상으로 2013년부터 2020년까지의 유입량 시자료와 종관기상관측기온 및 강수량 데이터를 학습, 검증, 평가로 나누어 훈련한 후, 모델의 성능 평가를 진행하였다. 최적 시퀀스 길이를 결정하기 위해 R2, RRMSE, CC, NSE, 그리고 PBIAS을 사용하였다. 분석 결과, LSTM-s2s 모델보다 attention까지 첨가한 모델이 전반적으로 성능이 우수했으며, attention 첨가 모델이 첨두값 예측에서도 높은 정확도를 보였다. 두 모델 모두 첨두값 발생 동안 유량 패턴을 잘 반영하였지만 세밀한 시간 단위 변화량 패턴 모의에는 한계가 있었다. 시간 단위 예측의 한계에도 불구하고, LSTM-s2s에 attention까지 추가한 모델은 향후 댐유입량 예측에 활용될 수 있을 것으로 판단한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.269-271
/
2022
In recent years, RNN networks with LSTM blocks have been used extensively in machine learning tasks that process sequential data. These networks have proven to be particularly good at sequential language processing tasks by being more able to accurately predict the next most likely word in a given sequence than traditional neural networks. This study trained an RNN / LSTM neural network on three different translations of 150 biblical Psalms - in both English and Korean. The resulting model is then fed an input word and a length number from which it automatically generates a new Psalm of the desired length based on the patterns it recognized while training. The results of training the network on both English text and Korean text are compared and discussed.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.391-395
/
2021
텍스트 스타일 변환은 입력 스타일(source style)로 쓰여진 텍스트의 내용(content)을 유지하며 목적 스타일(target style)의 텍스트로 변환하는 문제이다. 텍스트 스타일 변환을 시퀀스 간 변환 문제(sequence-to-sequence)로 보고 기존 기계학습 모델을 이용해 해결할 수 있지만, 모델 학습에 필요한 각 스타일에 대응되는 병렬 말뭉치를 구하기 어려운 문제점이 있다. 따라서 최근에는 비병렬 말뭉치를 이용해 텍스트 스타일 변환을 수행하는 방법들이 연구되고 있다. 이 연구들은 주로 인코더-디코더 구조의 생성 모델을 사용하기 때문에 입력 문장이 가지고 있는 내용이 누락되거나 다른 내용의 문장이 생성될 수 있는 문제점이 있다. 본 논문에서는 마스크 언어 모델(masked language model)을 이용해 입력 텍스트의 내용을 유지하면서 원하는 스타일로 변경할 수 있는 텍스트 스타일 변환 방법을 제안하고 한국어 긍정-부정, 채팅체-문어체 변환에 적용한다.
Jeongho Kim;Byungsun Hwang;Jinwook Kim;Joonho Seon;Young Ghyu Sun;Jin Young Kim
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.6
/
pp.89-95
/
2023
In recent decades, human action recognition (HAR) has demonstrated potential applications in sports analysis, human-robot interaction, and large-scale signage content. In this paper, spatial temporal attention graph convolutional network (STAGCN)-based HAR system is proposed. Spatioal-temmporal features of skeleton sequences are assigned different weights by STAGCN, enabling the consideration of key joints and viewpoints. From simulation results, it has been shown that the performance of the proposed model can be improved in terms of classification accuracy in the NTU RGB+D dataset.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1109-1116
/
2023
Object tracking is used to track a goal in a video sequence by using coordinate information provided as annotation in the first frame of the video. In this paper, we propose a tracking algorithm that combines deep features and region inference modules to improve object tracking accuracy. In order to obtain sufficient object information, a convolution neural network was designed with a Siamese network structure. For object region inference, the region proposal network and overlapping confidence module were applied and used for tracking. The performance of the proposed tracking algorithm was evaluated using the Object Tracking Benchmark dataset, and it achieved 69.1% in the Success index and 89.3% in the Precision Metrics.
Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.11
/
pp.1-11
/
1998
We present somple block methods for blind maximal ratio combining (MRC) based on a maximum likelihood (ML) principle and finite alphabet properties (FAP) inherent in digital communication systems. The methods can provide accurate estimates of channel parameters even with a small subset of data, thus realizing nearly perfect combining. The channel parameters of diversity branches and the data sequence are estimated simultaneously by using an alternating projection technique. Two different methods, that is, (1) Joint combining and data sequence estimation(JC-DSE) method and (2) Pre-combining and blind phase estimation (PC-BPE) method are presented. Efficient initiallization schemes that can assure the convergence to the global optimum are also presented. Simulation results demonstrate the performance of two methods on the symbol error rate (SER) and the estimated accuracy of the channel parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.